Cargando…

Improved image quality of temporal bone CT with an ultrahigh-resolution CT scanner: clinical pilot studies

PURPOSE: Ultrahigh-resolution CT (UHRCT) with slice collimation of 0.25 mm × 160 and matrix size of 1024 × 1024 has become clinically available. We compared the image quality of temporal bone CT (TBCT) between UHRCT and conventional multidetector CT (MDCT). MATERIALS AND METHODS: We retrospectively...

Descripción completa

Detalles Bibliográficos
Autores principales: Ohara, Arisa, Machida, Haruhiko, Shiga, Hisae, Yamamura, Wataru, Yokoyama, Kenichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Singapore 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7452920/
https://www.ncbi.nlm.nih.gov/pubmed/32394364
http://dx.doi.org/10.1007/s11604-020-00987-5
Descripción
Sumario:PURPOSE: Ultrahigh-resolution CT (UHRCT) with slice collimation of 0.25 mm × 160 and matrix size of 1024 × 1024 has become clinically available. We compared the image quality of temporal bone CT (TBCT) between UHRCT and conventional multidetector CT (MDCT). MATERIALS AND METHODS: We retrospectively enrolled 20 patients who underwent TBCT by MDCT (matrix size, 512 × 512) and subsequently by UHRCT (matrix size, 1024 × 1024). Two independent reviewers subjectively graded delineation of normal stapes, oval window, facial nerve canal, incudostapedial joint, and tympanic tegmen. We also quantified image noise in the cerebellar hemisphere. Between MDCT and UHRCT, we compared mean subjective grades using the Wilcoxon signed-rank test and the image noise using paired t test. RESULTS: Grades were significantly higher with UHRCT than with MDCT for all the anatomies (P < 0.001), whereas noise was significantly higher with UHRCT than with MDCT (P = 0.002). CONCLUSION: For TBCT, UHRCT shows better delineation of the fine anatomical structures compared with MDCT.