Cargando…
Predicting risk of late age-related macular degeneration using deep learning
By 2040, age-related macular degeneration (AMD) will affect ~288 million people worldwide. Identifying individuals at high risk of progression to late AMD, the sight-threatening stage, is critical for clinical actions, including medical interventions and timely monitoring. Although deep learning has...
Autores principales: | Peng, Yifan, Keenan, Tiarnan D., Chen, Qingyu, Agrón, Elvira, Allot, Alexis, Wong, Wai T., Chew, Emily Y., Lu, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453007/ https://www.ncbi.nlm.nih.gov/pubmed/32904246 http://dx.doi.org/10.1038/s41746-020-00317-z |
Ejemplares similares
-
Macular Thickness in Intermediate Age-Related Macular Degeneration Is Influenced by Disease Severity and Subretinal Drusenoid Deposit Presence
por: Chiang, Trent Tsun-Kang, et al.
Publicado: (2020) -
Investigations of Renal Function and Age-Related Macular Degeneration Phenotypes
por: Dave, Amisha D., et al.
Publicado: (2022) -
Repeatability of Scotopic Sensitivity and Dark Adaptation Using a Medmont Dark-Adapted Chromatic Perimeter in Age-related Macular Degeneration
por: Uddin, Durin, et al.
Publicado: (2020) -
Geographic Atrophy in Age-Related Macular Degeneration: A Tale of Two Stages
por: Keenan, Tiarnan D.L.
Publicado: (2023) -
Deep-learning-based Prediction of Late Age-Related Macular Degeneration Progression
por: Yan, Qi, et al.
Publicado: (2020)