Cargando…
A Computationally Efficient Method for Hybrid EEG-fNIRS BCI Based on the Pearson Correlation
A hybrid brain computer interface (BCI) system considered here is a combination of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). EEG-fNIRS signals are simultaneously recorded to achieve high motor imagery task classification. This integration helps to achieve better...
Autores principales: | Hasan, Mustafa A. H., Khan, Muhammad U., Mishra, Deepti |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453261/ https://www.ncbi.nlm.nih.gov/pubmed/32923476 http://dx.doi.org/10.1155/2020/1838140 |
Ejemplares similares
-
Hybrid EEG-fNIRS BCI Fusion Using Multi-Resolution Singular Value Decomposition (MSVD)
por: Khan, Muhammad Umer, et al.
Publicado: (2020) -
Hybrid EEG–fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control
por: Khan, Muhammad Jawad, et al.
Publicado: (2017) -
OptEF-BCI: An Optimization-Based Hybrid EEG and fNIRS–Brain Computer Interface
por: Ali, Muhammad Umair, et al.
Publicado: (2023) -
Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review
por: Khan, Haroon, et al.
Publicado: (2021) -
Toward a Hybrid Passive BCI for the Modulation of Sustained Attention Using EEG and fNIRS
por: Karran, Alexander J., et al.
Publicado: (2019)