Cargando…
The influence of suture materials on the biomechanical behavior of suture-meniscal specimens: a comparative study in a porcine model
BACKGROUND: Repair of a meniscal tear is indicated in certain conditions. Despite extensive research on the biomechanics of various repair methods, there has been minimal investigation of whether the suture material influences the meniscal-suture construct. The purpose of this study was to compare t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453549/ https://www.ncbi.nlm.nih.gov/pubmed/32859270 http://dx.doi.org/10.1186/s43019-020-00053-4 |
Sumario: | BACKGROUND: Repair of a meniscal tear is indicated in certain conditions. Despite extensive research on the biomechanics of various repair methods, there has been minimal investigation of whether the suture material influences the meniscal-suture construct. The purpose of this study was to compare the biomechanical properties of nine different suture materials under cyclic and load-to-failure conditions. METHODS: Ninety porcine menisci were randomly allocated to simple suture placement using either Ultrabraid®, Ultratape®, Magnum Wire®, TigerWire®, TigerTape®, LabralTape®, Orthocord®, 0 FiberWire®, or 2-0 FiberWire®. Each suture-meniscus specimen underwent cyclic loading followed by load-to-failure testing. Elongation, maximum load to failure, stiffness, and mode of failure were recorded and compared between each suture type using non-parametric testing. Mean ± standard deviation was reported and the statistical significance was p < 0.05. RESULTS: Elongation during cyclic loading was lowest with 2-0 FiberWire (0.95 ± 0.17 mm); this value was statistically significantly different than the results for all other sutures except 0 FiberWire® (1.09 ± 0.17 mm, p = 0.79), TigerWire® (1.09 ± 0.29 mm, p = 0.85), TigerTape® (1.39 ± 0.29 mm, p = 0.08), and LabralTape® (1.20 ± 0.33 mm, p = 0.41). The highest elongation was seen with Ultrabraid® (1.91 ± 0.34 mm); this value was statistically significantly greater than the results for all other suture materials except Orthocord® (1.59 mm ± 0.31 mm, p = 0.46) and Magnum Wire® (1.43 ± 0.25 mm, p = 0.14). Load to failure was highest for TigerTape® (287.43 ± 41.15 N), and this result was statistically significantly different than the results for all other sutures except LabralTape® (271.34 ± 48.48 N, p = 0.99) and TigerWire® (251.03 ± 25.8 N, p = 0.51). Stiffness was highest for LabralTape® (195.77 ± 49.06 N/mm), and this result was statistically significantly different than the results for all other sutures except TigerWire® (186.49 ± 19.83 N/mm, p = 0.45) and TigerTape® (173.35 ± 15.60 N/mm, p = 0.19). The majority of sutures failed by pullout (n = 46, 51%) or tearing (n = 40, 45%). CONCLUSION: Suture design and material affect the biomechanical behavior of porcine meniscal-suture specimens. LabralTape®, TigerWire®, and TigerTape® demonstrated better overall combinations of low elongation, high maximum load to failure, and high stiffness. |
---|