Cargando…
Generative Adversarial Networks for Crystal Structure Prediction
[Image: see text] The constant demand for novel functional materials calls for efficient strategies to accelerate the materials discovery, and crystal structure prediction is one of the most fundamental tasks along that direction. In addressing this challenge, generative models can offer new opportu...
Autores principales: | Kim, Sungwon, Noh, Juhwan, Gu, Geun Ho, Aspuru-Guzik, Alan, Jung, Yousung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453563/ https://www.ncbi.nlm.nih.gov/pubmed/32875082 http://dx.doi.org/10.1021/acscentsci.0c00426 |
Ejemplares similares
-
Correction to “Generative Adversarial Networks
for Crystal Structure Prediction”
por: Kim, Sungwon, et al.
Publicado: (2022) -
Machine-enabled inverse design of inorganic solid materials: promises and challenges
por: Noh, Juhwan, et al.
Publicado: (2020) -
Predicting potentially hazardous chemical reactions using an explainable neural network
por: Kim, Juhwan, et al.
Publicado: (2021) -
Exploring the Advantages
of Quantum Generative Adversarial
Networks in Generative Chemistry
por: Kao, Po-Yu, et al.
Publicado: (2023) -
Understanding potential-dependent competition between electrocatalytic dinitrogen and proton reduction reactions
por: Choi, Changhyeok, et al.
Publicado: (2021)