Cargando…
Machine learning based refined differential gene expression analysis of pediatric sepsis
BACKGROUND: Differential expression (DE) analysis of transcriptomic data enables genome-wide analysis of gene expression changes associated with biological conditions of interest. Such analysis often provides a wide list of genes that are differentially expressed between two or more groups. In gener...
Autores principales: | Abbas, Mostafa, EL-Manzalawy, Yasser |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453705/ https://www.ncbi.nlm.nih.gov/pubmed/32859206 http://dx.doi.org/10.1186/s12920-020-00771-4 |
Ejemplares similares
-
Real Space Refinement of Crystal Structures with Canonical Distributions of Electrons
por: Ginzinger, Simon W., et al.
Publicado: (2011) -
Novel biomarker genes which distinguish between smokers and chronic obstructive pulmonary disease patients with machine learning approach
por: Matsumura, Kazushi, et al.
Publicado: (2020) -
Are we there yet? A machine learning architecture to predict organotropic metastases
por: Skaro, Michael, et al.
Publicado: (2021) -
Characterization of clinical patterns of dengue patients using an unsupervised machine learning approach
por: Macedo Hair, Gleicy, et al.
Publicado: (2019) -
Non-linear dynamical signal characterization for prediction of defibrillation success through machine learning
por: Shandilya, Sharad, et al.
Publicado: (2012)