Cargando…

Metal Concentrations in Sediments of the Alinsaog River, Santa Cruz, Zambales, Central Luzon, Philippines

BACKGROUND. Efforts are needed to evaluate heavy metal concentrations in aquatic sediments which serve as repositories and as sources of contamination of other habitats. OBJECTIVES. The present study assessed temporal changes in the pH, particle size and concentration of metals in sediments of a min...

Descripción completa

Detalles Bibliográficos
Autores principales: Sazon, Rowena R., Migo, Veronica P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Black Smith Institute 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453812/
https://www.ncbi.nlm.nih.gov/pubmed/32874770
http://dx.doi.org/10.5696/2156-9614-10.27.200914
_version_ 1783575424124583936
author Sazon, Rowena R.
Migo, Veronica P.
author_facet Sazon, Rowena R.
Migo, Veronica P.
author_sort Sazon, Rowena R.
collection PubMed
description BACKGROUND. Efforts are needed to evaluate heavy metal concentrations in aquatic sediments which serve as repositories and as sources of contamination of other habitats. OBJECTIVES. The present study assessed temporal changes in the pH, particle size and concentration of metals in sediments of a mining-affected river in Zambales, Philippines. METHODS. Sediment samples were collected at different periods in four stations along the river using a modified Van Veen grab. The samples were subjected to quartering, air-drying, and sieved through a mesh of 40 mm prior to X-ray fluorescence spectroscopy analysis using Thermo Scientific Niton XL3t to determine metal concentrations. The sediment particle size was analyzed by the sieve method and soil pH by the electrode method. RESULTS. Measured metal concentrations in the sediment were as follows: iron (Fe)> calcium (Ca)> chromium (Cr)> nickel (Ni)> manganese (Mn) with averages of 174.6 mg/g, 7.89 mg/g, 6.54 mg/g, 4.82 mg/g, and 2.75 mg/g dry matter (DM), respectively. The mean pH of riverine sediments was generally neutral, except for Station 4. In terms of particle size, silt and clay fractions increased in the upstream station but decreased in the midstream and downstream stations across the sampling periods. The flooding brought by Typhoon Koppu resulted in lowered concentrations of Fe, Mn, Cr, and Ni and an upsurge in Ca and potassium levels. DISCUSSION. Most of the heavy metals (Fe, Ni, Cr, Mn) exceeded the probable effect level (PEL) for inorganics in sediments, suggesting that the adverse effects of these metals on the environment and aquatic organisms are expected to occur frequently. In comparison with Station 4, which was less affected by siltation, there was a sign of metal enrichment in the area. This indicates that soil erosion and runoff, which might have been triggered by vegetation loss, mineral extraction, and agricultural activities, had a significant impact on the quality of river sediments. CONCLUSIONS. The findings of the study point to the need for the formulation and implementation of appropriate regulatory measures for the protection and rehabilitation of the heavy metal-loaded river. COMPETING INTERESTS. The authors declare no competing financial interests.
format Online
Article
Text
id pubmed-7453812
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Black Smith Institute
record_format MEDLINE/PubMed
spelling pubmed-74538122020-08-31 Metal Concentrations in Sediments of the Alinsaog River, Santa Cruz, Zambales, Central Luzon, Philippines Sazon, Rowena R. Migo, Veronica P. J Health Pollut Research BACKGROUND. Efforts are needed to evaluate heavy metal concentrations in aquatic sediments which serve as repositories and as sources of contamination of other habitats. OBJECTIVES. The present study assessed temporal changes in the pH, particle size and concentration of metals in sediments of a mining-affected river in Zambales, Philippines. METHODS. Sediment samples were collected at different periods in four stations along the river using a modified Van Veen grab. The samples were subjected to quartering, air-drying, and sieved through a mesh of 40 mm prior to X-ray fluorescence spectroscopy analysis using Thermo Scientific Niton XL3t to determine metal concentrations. The sediment particle size was analyzed by the sieve method and soil pH by the electrode method. RESULTS. Measured metal concentrations in the sediment were as follows: iron (Fe)> calcium (Ca)> chromium (Cr)> nickel (Ni)> manganese (Mn) with averages of 174.6 mg/g, 7.89 mg/g, 6.54 mg/g, 4.82 mg/g, and 2.75 mg/g dry matter (DM), respectively. The mean pH of riverine sediments was generally neutral, except for Station 4. In terms of particle size, silt and clay fractions increased in the upstream station but decreased in the midstream and downstream stations across the sampling periods. The flooding brought by Typhoon Koppu resulted in lowered concentrations of Fe, Mn, Cr, and Ni and an upsurge in Ca and potassium levels. DISCUSSION. Most of the heavy metals (Fe, Ni, Cr, Mn) exceeded the probable effect level (PEL) for inorganics in sediments, suggesting that the adverse effects of these metals on the environment and aquatic organisms are expected to occur frequently. In comparison with Station 4, which was less affected by siltation, there was a sign of metal enrichment in the area. This indicates that soil erosion and runoff, which might have been triggered by vegetation loss, mineral extraction, and agricultural activities, had a significant impact on the quality of river sediments. CONCLUSIONS. The findings of the study point to the need for the formulation and implementation of appropriate regulatory measures for the protection and rehabilitation of the heavy metal-loaded river. COMPETING INTERESTS. The authors declare no competing financial interests. Black Smith Institute 2020-08-25 /pmc/articles/PMC7453812/ /pubmed/32874770 http://dx.doi.org/10.5696/2156-9614-10.27.200914 Text en © Pure Earth 2020 This is an Open Access article distributed in accordance with Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Research
Sazon, Rowena R.
Migo, Veronica P.
Metal Concentrations in Sediments of the Alinsaog River, Santa Cruz, Zambales, Central Luzon, Philippines
title Metal Concentrations in Sediments of the Alinsaog River, Santa Cruz, Zambales, Central Luzon, Philippines
title_full Metal Concentrations in Sediments of the Alinsaog River, Santa Cruz, Zambales, Central Luzon, Philippines
title_fullStr Metal Concentrations in Sediments of the Alinsaog River, Santa Cruz, Zambales, Central Luzon, Philippines
title_full_unstemmed Metal Concentrations in Sediments of the Alinsaog River, Santa Cruz, Zambales, Central Luzon, Philippines
title_short Metal Concentrations in Sediments of the Alinsaog River, Santa Cruz, Zambales, Central Luzon, Philippines
title_sort metal concentrations in sediments of the alinsaog river, santa cruz, zambales, central luzon, philippines
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453812/
https://www.ncbi.nlm.nih.gov/pubmed/32874770
http://dx.doi.org/10.5696/2156-9614-10.27.200914
work_keys_str_mv AT sazonrowenar metalconcentrationsinsedimentsofthealinsaogriversantacruzzambalescentralluzonphilippines
AT migoveronicap metalconcentrationsinsedimentsofthealinsaogriversantacruzzambalescentralluzonphilippines