Cargando…
Development of non-invasive diabetes risk prediction models as decision support tools designed for application in the dental clinical environment
The objective was to develop a predictive model using medical-dental data from an integrated electronic health record (iEHR) to identify individuals with undiagnosed diabetes mellitus (DM) in dental settings. Retrospective data retrieved from Marshfield Clinic Health System’s data-warehouse was pre-...
Autores principales: | Hegde, Harshad, Shimpi, Neel, Panny, Aloksagar, Glurich, Ingrid, Christie, Pamela, Acharya, Amit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453822/ https://www.ncbi.nlm.nih.gov/pubmed/32864420 http://dx.doi.org/10.1016/j.imu.2019.100254 |
Ejemplares similares
-
Identifying oral disease variables associated with pneumonia emergence by application of machine learning to integrated medical and dental big data to inform eHealth approaches
por: Shimpi, Neel, et al.
Publicado: (2022) -
Longitudinal Observation of Outcomes and Patient Access to Integrated Care Following Point-of-Care Glycemic Screening in Community Health Center Dental Safety Net Clinics
por: Glurich, Ingrid, et al.
Publicado: (2021) -
Development and Validation of a Non-Invasive, Chairside Oral Cavity Cancer Risk Assessment Prototype Using Machine Learning Approach
por: Shimpi, Neel, et al.
Publicado: (2022) -
Modeling longitudinal oral health status and pneumonia risk: secondary data analyses of an integrated dental-medical cohort
por: Berg, Richard L., et al.
Publicado: (2023) -
Systematic review of studies examining contribution of oral health variables to risk prediction models for undiagnosed Type 2 diabetes and prediabetes
por: Glurich, Ingrid, et al.
Publicado: (2021)