Cargando…
X-ModalNet: A semi-supervised deep cross-modal network for classification of remote sensing data
This paper addresses the problem of semi-supervised transfer learning with limited cross-modality data in remote sensing. A large amount of multi-modal earth observation images, such as multispectral imagery (MSI) or synthetic aperture radar (SAR) data, are openly available on a global scale, enabli...
Autores principales: | Hong, Danfeng, Yokoya, Naoto, Xia, Gui-Song, Chanussot, Jocelyn, Zhu, Xiao Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453915/ https://www.ncbi.nlm.nih.gov/pubmed/32904376 http://dx.doi.org/10.1016/j.isprsjprs.2020.06.014 |
Ejemplares similares
-
Learnable manifold alignment (LeMA): A semi-supervised cross-modality learning framework for land cover and land use classification
por: Hong, Danfeng, et al.
Publicado: (2019) -
Learning to propagate labels on graphs: An iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction
por: Hong, Danfeng, et al.
Publicado: (2019) -
Multimodal remote sensing benchmark datasets for land cover classification with a shared and specific feature learning model
por: Hong, Danfeng, et al.
Publicado: (2021) -
Semi-supervised bidirectional alignment for Remote Sensing cross-domain scene classification
por: Huang, Wei, et al.
Publicado: (2023) -
Semi-supervised Learning Approach to Generate Neuroimaging Modalities with Adversarial Training
por: Nguyen, Harrison, et al.
Publicado: (2020)