Cargando…
A graph-theoretic criterion for absolute irreducibility of integer-valued polynomials with square-free denominator
An irreducible element of a commutative ring is absolutely irreducible if no power of it has more than one (essentially different) factorization into irreducibles. In the case of the ring [Image: see text] of integer-valued polynomials on a principal ideal domain D with quotient field K, we give an...
Autores principales: | Frisch, Sophie, Nakato, Sarah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7454568/ https://www.ncbi.nlm.nih.gov/pubmed/32939189 http://dx.doi.org/10.1080/00927872.2020.1744618 |
Ejemplares similares
-
Conference on Commutative rings, integer-valued polynomials and polynomial functions
por: Fontana, Marco, et al.
Publicado: (2014) -
Integer-valued polynomials
por: Cahen, Paul-Jean, et al.
Publicado: (2014) -
Integer-valued polynomials on valuation rings of global fields with prescribed lengths of factorizations
por: Fadinger-Held, Victor, et al.
Publicado: (2023) -
Sylow p-groups of polynomial permutations on the integers mod [Formula: see text] ()
por: Frisch, Sophie, et al.
Publicado: (2013) -
Sums of squares of integers
por: Moreno, Carlos J, et al.
Publicado: (2005)