Cargando…
Compressive Big Data Analytics: An ensemble meta-algorithm for high-dimensional multisource datasets
Health advances are contingent on continuous development of new methods and approaches to foster data-driven discovery in the biomedical and clinical sciences. Open-science and team-based scientific discovery offer hope for tackling some of the difficult challenges associated with managing, modeling...
Autores principales: | Marino, Simeone, Zhao, Yi, Zhou, Nina, Zhou, Yiwang, Toga, Arthur W., Zhao, Lu, Jian, Yingsi, Yang, Yichen, Chen, Yehu, Wu, Qiucheng, Wild, Jessica, Cummings, Brandon, Dinov, Ivo D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455041/ https://www.ncbi.nlm.nih.gov/pubmed/32857775 http://dx.doi.org/10.1371/journal.pone.0228520 |
Ejemplares similares
-
Controlled feature selection and compressive big data analytics: Applications to biomedical and health studies
por: Marino, Simeone, et al.
Publicado: (2018) -
Predictive Big Data Analytics using the UK Biobank Data
por: Zhou, Yiwang, et al.
Publicado: (2019) -
Sharing big biomedical data
por: Toga, Arthur W, et al.
Publicado: (2015) -
Classifying migraine using PET compressive big data analytics of brain’s μ-opioid and D2/D3 dopamine neurotransmission
por: Marino, Simeone, et al.
Publicado: (2023) -
DataSifter II: Partially synthetic data sharing of sensitive information containing time-varying correlated observations
por: Zhou, Nina, et al.
Publicado: (2022)