Cargando…
Scalable Bayesian Inference for Coupled Hidden Markov and Semi-Markov Models
Bayesian inference for coupled hidden Markov models frequently relies on data augmentation techniques for imputation of the hidden state processes. Considerable progress has been made on developing such techniques, mainly using Markov chain Monte Carlo (MCMC) methods. However, as the dimensionality...
Autores principales: | Touloupou, Panayiota, Finkenstädt, Bärbel, Spencer, Simon E. F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455056/ https://www.ncbi.nlm.nih.gov/pubmed/32939192 http://dx.doi.org/10.1080/10618600.2019.1654880 |
Ejemplares similares
-
Inference in Hidden Markov Models
por: Cappe, Olivier
Publicado: (2005) -
Hidden Markov models for monitoring circadian rhythmicity in telemetric activity data
por: Huang, Qi, et al.
Publicado: (2018) -
Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference
por: Gamerman, Dani, et al.
Publicado: (2006) -
Bayesian inference for continuous-time hidden Markov models with an unknown number of states
por: Luo, Yu, et al.
Publicado: (2021) -
Semi-Markov Chains and Hidden Semi-Markov Models toward Applications: Their Use in Reliability and DNA Analysis
por: Barbu, Vlad, et al.
Publicado: (2008)