Cargando…

Gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin

Alpha 1-antitrypsin (AAT) deficiency, a hereditary disorder characterized by low serum levels of functional AAT, is associated with early development of panacinar emphysema. AAT inhibits serine proteases, including neutrophil elastase, protecting the lung from proteolytic destruction. Cigarette smok...

Descripción completa

Detalles Bibliográficos
Autores principales: Sosulski, Meredith L., Stiles, Katie M., Frenk, Esther Z., Hart, Fiona M., Matsumura, Yuki, De, Bishnu P., Kaminsky, Stephen M., Crystal, Ronald G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455074/
https://www.ncbi.nlm.nih.gov/pubmed/32759494
http://dx.doi.org/10.1172/jci.insight.135951
_version_ 1783575558926368768
author Sosulski, Meredith L.
Stiles, Katie M.
Frenk, Esther Z.
Hart, Fiona M.
Matsumura, Yuki
De, Bishnu P.
Kaminsky, Stephen M.
Crystal, Ronald G.
author_facet Sosulski, Meredith L.
Stiles, Katie M.
Frenk, Esther Z.
Hart, Fiona M.
Matsumura, Yuki
De, Bishnu P.
Kaminsky, Stephen M.
Crystal, Ronald G.
author_sort Sosulski, Meredith L.
collection PubMed
description Alpha 1-antitrypsin (AAT) deficiency, a hereditary disorder characterized by low serum levels of functional AAT, is associated with early development of panacinar emphysema. AAT inhibits serine proteases, including neutrophil elastase, protecting the lung from proteolytic destruction. Cigarette smoke, pollution, and inflammatory cell–mediated oxidation of methionine (M) 351 and 358 inactivates AAT, limiting lung protection. In vitro studies using amino acid substitutions demonstrated that replacing M351 with valine (V) and M358 with leucine (L) on a normal M1 alanine (A) 213 background provided maximum antiprotease protection despite oxidant stress. We hypothesized that a onetime administration of a serotype 8 adeno-associated virus (AAV8) gene transfer vector coding for the oxidation-resistant variant AAT (A213/V351/L358; 8/AVL) would maintain antiprotease activity under oxidant stress compared with normal AAT (A213/M351/M358; 8/AMM). 8/AVL was administered via intravenous (IV) and intrapleural (IPL) routes to C57BL/6 mice. High, dose-dependent AAT levels were found in the serum and lung epithelial lining fluid (ELF) of mice administered 8/AVL or 8/AMM by IV or IPL. 8/AVL serum and ELF retained serine protease–inhibitory activity despite oxidant stress while 8/AMM function was abolished. 8/AVL represents a second-generation gene therapy for AAT deficiency providing effective antiprotease protection even with oxidant stress.
format Online
Article
Text
id pubmed-7455074
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Society for Clinical Investigation
record_format MEDLINE/PubMed
spelling pubmed-74550742020-09-01 Gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin Sosulski, Meredith L. Stiles, Katie M. Frenk, Esther Z. Hart, Fiona M. Matsumura, Yuki De, Bishnu P. Kaminsky, Stephen M. Crystal, Ronald G. JCI Insight Research Article Alpha 1-antitrypsin (AAT) deficiency, a hereditary disorder characterized by low serum levels of functional AAT, is associated with early development of panacinar emphysema. AAT inhibits serine proteases, including neutrophil elastase, protecting the lung from proteolytic destruction. Cigarette smoke, pollution, and inflammatory cell–mediated oxidation of methionine (M) 351 and 358 inactivates AAT, limiting lung protection. In vitro studies using amino acid substitutions demonstrated that replacing M351 with valine (V) and M358 with leucine (L) on a normal M1 alanine (A) 213 background provided maximum antiprotease protection despite oxidant stress. We hypothesized that a onetime administration of a serotype 8 adeno-associated virus (AAV8) gene transfer vector coding for the oxidation-resistant variant AAT (A213/V351/L358; 8/AVL) would maintain antiprotease activity under oxidant stress compared with normal AAT (A213/M351/M358; 8/AMM). 8/AVL was administered via intravenous (IV) and intrapleural (IPL) routes to C57BL/6 mice. High, dose-dependent AAT levels were found in the serum and lung epithelial lining fluid (ELF) of mice administered 8/AVL or 8/AMM by IV or IPL. 8/AVL serum and ELF retained serine protease–inhibitory activity despite oxidant stress while 8/AMM function was abolished. 8/AVL represents a second-generation gene therapy for AAT deficiency providing effective antiprotease protection even with oxidant stress. American Society for Clinical Investigation 2020-08-06 /pmc/articles/PMC7455074/ /pubmed/32759494 http://dx.doi.org/10.1172/jci.insight.135951 Text en © 2020 Sosulski et al. http://creativecommons.org/licenses/by/4.0/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Research Article
Sosulski, Meredith L.
Stiles, Katie M.
Frenk, Esther Z.
Hart, Fiona M.
Matsumura, Yuki
De, Bishnu P.
Kaminsky, Stephen M.
Crystal, Ronald G.
Gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin
title Gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin
title_full Gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin
title_fullStr Gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin
title_full_unstemmed Gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin
title_short Gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin
title_sort gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455074/
https://www.ncbi.nlm.nih.gov/pubmed/32759494
http://dx.doi.org/10.1172/jci.insight.135951
work_keys_str_mv AT sosulskimeredithl genetherapyforalpha1antitrypsindeficiencywithanoxidantresistanthumanalpha1antitrypsin
AT stileskatiem genetherapyforalpha1antitrypsindeficiencywithanoxidantresistanthumanalpha1antitrypsin
AT frenkestherz genetherapyforalpha1antitrypsindeficiencywithanoxidantresistanthumanalpha1antitrypsin
AT hartfionam genetherapyforalpha1antitrypsindeficiencywithanoxidantresistanthumanalpha1antitrypsin
AT matsumurayuki genetherapyforalpha1antitrypsindeficiencywithanoxidantresistanthumanalpha1antitrypsin
AT debishnup genetherapyforalpha1antitrypsindeficiencywithanoxidantresistanthumanalpha1antitrypsin
AT kaminskystephenm genetherapyforalpha1antitrypsindeficiencywithanoxidantresistanthumanalpha1antitrypsin
AT crystalronaldg genetherapyforalpha1antitrypsindeficiencywithanoxidantresistanthumanalpha1antitrypsin