Cargando…
Gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin
Alpha 1-antitrypsin (AAT) deficiency, a hereditary disorder characterized by low serum levels of functional AAT, is associated with early development of panacinar emphysema. AAT inhibits serine proteases, including neutrophil elastase, protecting the lung from proteolytic destruction. Cigarette smok...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Clinical Investigation
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455074/ https://www.ncbi.nlm.nih.gov/pubmed/32759494 http://dx.doi.org/10.1172/jci.insight.135951 |
_version_ | 1783575558926368768 |
---|---|
author | Sosulski, Meredith L. Stiles, Katie M. Frenk, Esther Z. Hart, Fiona M. Matsumura, Yuki De, Bishnu P. Kaminsky, Stephen M. Crystal, Ronald G. |
author_facet | Sosulski, Meredith L. Stiles, Katie M. Frenk, Esther Z. Hart, Fiona M. Matsumura, Yuki De, Bishnu P. Kaminsky, Stephen M. Crystal, Ronald G. |
author_sort | Sosulski, Meredith L. |
collection | PubMed |
description | Alpha 1-antitrypsin (AAT) deficiency, a hereditary disorder characterized by low serum levels of functional AAT, is associated with early development of panacinar emphysema. AAT inhibits serine proteases, including neutrophil elastase, protecting the lung from proteolytic destruction. Cigarette smoke, pollution, and inflammatory cell–mediated oxidation of methionine (M) 351 and 358 inactivates AAT, limiting lung protection. In vitro studies using amino acid substitutions demonstrated that replacing M351 with valine (V) and M358 with leucine (L) on a normal M1 alanine (A) 213 background provided maximum antiprotease protection despite oxidant stress. We hypothesized that a onetime administration of a serotype 8 adeno-associated virus (AAV8) gene transfer vector coding for the oxidation-resistant variant AAT (A213/V351/L358; 8/AVL) would maintain antiprotease activity under oxidant stress compared with normal AAT (A213/M351/M358; 8/AMM). 8/AVL was administered via intravenous (IV) and intrapleural (IPL) routes to C57BL/6 mice. High, dose-dependent AAT levels were found in the serum and lung epithelial lining fluid (ELF) of mice administered 8/AVL or 8/AMM by IV or IPL. 8/AVL serum and ELF retained serine protease–inhibitory activity despite oxidant stress while 8/AMM function was abolished. 8/AVL represents a second-generation gene therapy for AAT deficiency providing effective antiprotease protection even with oxidant stress. |
format | Online Article Text |
id | pubmed-7455074 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society for Clinical Investigation |
record_format | MEDLINE/PubMed |
spelling | pubmed-74550742020-09-01 Gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin Sosulski, Meredith L. Stiles, Katie M. Frenk, Esther Z. Hart, Fiona M. Matsumura, Yuki De, Bishnu P. Kaminsky, Stephen M. Crystal, Ronald G. JCI Insight Research Article Alpha 1-antitrypsin (AAT) deficiency, a hereditary disorder characterized by low serum levels of functional AAT, is associated with early development of panacinar emphysema. AAT inhibits serine proteases, including neutrophil elastase, protecting the lung from proteolytic destruction. Cigarette smoke, pollution, and inflammatory cell–mediated oxidation of methionine (M) 351 and 358 inactivates AAT, limiting lung protection. In vitro studies using amino acid substitutions demonstrated that replacing M351 with valine (V) and M358 with leucine (L) on a normal M1 alanine (A) 213 background provided maximum antiprotease protection despite oxidant stress. We hypothesized that a onetime administration of a serotype 8 adeno-associated virus (AAV8) gene transfer vector coding for the oxidation-resistant variant AAT (A213/V351/L358; 8/AVL) would maintain antiprotease activity under oxidant stress compared with normal AAT (A213/M351/M358; 8/AMM). 8/AVL was administered via intravenous (IV) and intrapleural (IPL) routes to C57BL/6 mice. High, dose-dependent AAT levels were found in the serum and lung epithelial lining fluid (ELF) of mice administered 8/AVL or 8/AMM by IV or IPL. 8/AVL serum and ELF retained serine protease–inhibitory activity despite oxidant stress while 8/AMM function was abolished. 8/AVL represents a second-generation gene therapy for AAT deficiency providing effective antiprotease protection even with oxidant stress. American Society for Clinical Investigation 2020-08-06 /pmc/articles/PMC7455074/ /pubmed/32759494 http://dx.doi.org/10.1172/jci.insight.135951 Text en © 2020 Sosulski et al. http://creativecommons.org/licenses/by/4.0/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Research Article Sosulski, Meredith L. Stiles, Katie M. Frenk, Esther Z. Hart, Fiona M. Matsumura, Yuki De, Bishnu P. Kaminsky, Stephen M. Crystal, Ronald G. Gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin |
title | Gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin |
title_full | Gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin |
title_fullStr | Gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin |
title_full_unstemmed | Gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin |
title_short | Gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin |
title_sort | gene therapy for alpha 1-antitrypsin deficiency with an oxidant-resistant human alpha 1-antitrypsin |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455074/ https://www.ncbi.nlm.nih.gov/pubmed/32759494 http://dx.doi.org/10.1172/jci.insight.135951 |
work_keys_str_mv | AT sosulskimeredithl genetherapyforalpha1antitrypsindeficiencywithanoxidantresistanthumanalpha1antitrypsin AT stileskatiem genetherapyforalpha1antitrypsindeficiencywithanoxidantresistanthumanalpha1antitrypsin AT frenkestherz genetherapyforalpha1antitrypsindeficiencywithanoxidantresistanthumanalpha1antitrypsin AT hartfionam genetherapyforalpha1antitrypsindeficiencywithanoxidantresistanthumanalpha1antitrypsin AT matsumurayuki genetherapyforalpha1antitrypsindeficiencywithanoxidantresistanthumanalpha1antitrypsin AT debishnup genetherapyforalpha1antitrypsindeficiencywithanoxidantresistanthumanalpha1antitrypsin AT kaminskystephenm genetherapyforalpha1antitrypsindeficiencywithanoxidantresistanthumanalpha1antitrypsin AT crystalronaldg genetherapyforalpha1antitrypsindeficiencywithanoxidantresistanthumanalpha1antitrypsin |