Cargando…

Kondo physics in antiferromagnetic Weyl semimetal Mn(3+x)Sn(1−x) films

Topology and strong electron correlations are crucial ingredients in emerging quantum materials, yet their intersection in experimental systems has been relatively limited to date. Strongly correlated Weyl semimetals, particularly when magnetism is incorporated, offer a unique and fertile platform t...

Descripción completa

Detalles Bibliográficos
Autores principales: Khadka, Durga, Thapaliya, T. R., Hurtado Parra, Sebastian, Han, Xingyue, Wen, Jiajia, Need, Ryan F., Khanal, Pravin, Wang, Weigang, Zang, Jiadong, Kikkawa, James M., Wu, Liang, Huang, S. X.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455184/
https://www.ncbi.nlm.nih.gov/pubmed/32923648
http://dx.doi.org/10.1126/sciadv.abc1977
_version_ 1783575581919543296
author Khadka, Durga
Thapaliya, T. R.
Hurtado Parra, Sebastian
Han, Xingyue
Wen, Jiajia
Need, Ryan F.
Khanal, Pravin
Wang, Weigang
Zang, Jiadong
Kikkawa, James M.
Wu, Liang
Huang, S. X.
author_facet Khadka, Durga
Thapaliya, T. R.
Hurtado Parra, Sebastian
Han, Xingyue
Wen, Jiajia
Need, Ryan F.
Khanal, Pravin
Wang, Weigang
Zang, Jiadong
Kikkawa, James M.
Wu, Liang
Huang, S. X.
author_sort Khadka, Durga
collection PubMed
description Topology and strong electron correlations are crucial ingredients in emerging quantum materials, yet their intersection in experimental systems has been relatively limited to date. Strongly correlated Weyl semimetals, particularly when magnetism is incorporated, offer a unique and fertile platform to explore emergent phenomena in novel topological matter and topological spintronics. The antiferromagnetic Weyl semimetal Mn(3)Sn exhibits many exotic physical properties such as a large spontaneous Hall effect and has recently attracted intense interest. In this work, we report synthesis of epitaxial Mn(3+x)Sn(1−x) films with greatly extended compositional range in comparison with that of bulk samples. As Sn atoms are replaced by magnetic Mn atoms, the Kondo effect, which is a celebrated example of strong correlations, emerges, develops coherence, and induces a hybridization energy gap. The magnetic doping and gap opening lead to rich extraordinary properties, as exemplified by the prominent DC Hall effects and resonance-enhanced terahertz Faraday rotation.
format Online
Article
Text
id pubmed-7455184
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-74551842020-09-11 Kondo physics in antiferromagnetic Weyl semimetal Mn(3+x)Sn(1−x) films Khadka, Durga Thapaliya, T. R. Hurtado Parra, Sebastian Han, Xingyue Wen, Jiajia Need, Ryan F. Khanal, Pravin Wang, Weigang Zang, Jiadong Kikkawa, James M. Wu, Liang Huang, S. X. Sci Adv Research Articles Topology and strong electron correlations are crucial ingredients in emerging quantum materials, yet their intersection in experimental systems has been relatively limited to date. Strongly correlated Weyl semimetals, particularly when magnetism is incorporated, offer a unique and fertile platform to explore emergent phenomena in novel topological matter and topological spintronics. The antiferromagnetic Weyl semimetal Mn(3)Sn exhibits many exotic physical properties such as a large spontaneous Hall effect and has recently attracted intense interest. In this work, we report synthesis of epitaxial Mn(3+x)Sn(1−x) films with greatly extended compositional range in comparison with that of bulk samples. As Sn atoms are replaced by magnetic Mn atoms, the Kondo effect, which is a celebrated example of strong correlations, emerges, develops coherence, and induces a hybridization energy gap. The magnetic doping and gap opening lead to rich extraordinary properties, as exemplified by the prominent DC Hall effects and resonance-enhanced terahertz Faraday rotation. American Association for the Advancement of Science 2020-08-28 /pmc/articles/PMC7455184/ /pubmed/32923648 http://dx.doi.org/10.1126/sciadv.abc1977 Text en Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Khadka, Durga
Thapaliya, T. R.
Hurtado Parra, Sebastian
Han, Xingyue
Wen, Jiajia
Need, Ryan F.
Khanal, Pravin
Wang, Weigang
Zang, Jiadong
Kikkawa, James M.
Wu, Liang
Huang, S. X.
Kondo physics in antiferromagnetic Weyl semimetal Mn(3+x)Sn(1−x) films
title Kondo physics in antiferromagnetic Weyl semimetal Mn(3+x)Sn(1−x) films
title_full Kondo physics in antiferromagnetic Weyl semimetal Mn(3+x)Sn(1−x) films
title_fullStr Kondo physics in antiferromagnetic Weyl semimetal Mn(3+x)Sn(1−x) films
title_full_unstemmed Kondo physics in antiferromagnetic Weyl semimetal Mn(3+x)Sn(1−x) films
title_short Kondo physics in antiferromagnetic Weyl semimetal Mn(3+x)Sn(1−x) films
title_sort kondo physics in antiferromagnetic weyl semimetal mn(3+x)sn(1−x) films
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455184/
https://www.ncbi.nlm.nih.gov/pubmed/32923648
http://dx.doi.org/10.1126/sciadv.abc1977
work_keys_str_mv AT khadkadurga kondophysicsinantiferromagneticweylsemimetalmn3xsn1xfilms
AT thapaliyatr kondophysicsinantiferromagneticweylsemimetalmn3xsn1xfilms
AT hurtadoparrasebastian kondophysicsinantiferromagneticweylsemimetalmn3xsn1xfilms
AT hanxingyue kondophysicsinantiferromagneticweylsemimetalmn3xsn1xfilms
AT wenjiajia kondophysicsinantiferromagneticweylsemimetalmn3xsn1xfilms
AT needryanf kondophysicsinantiferromagneticweylsemimetalmn3xsn1xfilms
AT khanalpravin kondophysicsinantiferromagneticweylsemimetalmn3xsn1xfilms
AT wangweigang kondophysicsinantiferromagneticweylsemimetalmn3xsn1xfilms
AT zangjiadong kondophysicsinantiferromagneticweylsemimetalmn3xsn1xfilms
AT kikkawajamesm kondophysicsinantiferromagneticweylsemimetalmn3xsn1xfilms
AT wuliang kondophysicsinantiferromagneticweylsemimetalmn3xsn1xfilms
AT huangsx kondophysicsinantiferromagneticweylsemimetalmn3xsn1xfilms