Cargando…
A data-driven understanding of COVID-19 dynamics using sequential genetic algorithm based probabilistic cellular automata
COVID-19 pandemic is severely impacting the lives of billions across the globe. Even after taking massive protective measures like nation-wide lockdowns, discontinuation of international flight services, rigorous testing etc., the infection spreading is still growing steadily, causing thousands of d...
Autores principales: | Ghosh, Sayantari, Bhattacharya, Saumik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455552/ https://www.ncbi.nlm.nih.gov/pubmed/32904415 http://dx.doi.org/10.1016/j.asoc.2020.106692 |
Ejemplares similares
-
Computational Model on COVID-19 Pandemic Using Probabilistic Cellular Automata
por: Ghosh, Sayantari, et al.
Publicado: (2021) -
How surface and fomite infection affect contagion dynamics: a study with self-propelled particles
por: Ghosh, Sayantari, et al.
Publicado: (2022) -
Ensuring the spread of referral marketing campaigns: a quantitative treatment
por: Ghosh, Sayantari, et al.
Publicado: (2020) -
Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
por: MotieGhader, Habib, et al.
Publicado: (2017) -
Genome Evolution by Matrix Algorithms: Cellular Automata Approach to Population Genetics
por: Qiu, Shuhao, et al.
Publicado: (2014)