Cargando…

HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy

Artificial intelligence is currently a hot topic in medicine. However, medical data is often sparse and hard to obtain due to legal restrictions and lack of medical personnel for the cumbersome and tedious process to manually label training data. These constraints make it difficult to develop system...

Descripción completa

Detalles Bibliográficos
Autores principales: Borgli, Hanna, Thambawita, Vajira, Smedsrud, Pia H., Hicks, Steven, Jha, Debesh, Eskeland, Sigrun L., Randel, Kristin Ranheim, Pogorelov, Konstantin, Lux, Mathias, Nguyen, Duc Tien Dang, Johansen, Dag, Griwodz, Carsten, Stensland, Håkon K., Garcia-Ceja, Enrique, Schmidt, Peter T., Hammer, Hugo L., Riegler, Michael A., Halvorsen, Pål, de Lange, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455694/
https://www.ncbi.nlm.nih.gov/pubmed/32859981
http://dx.doi.org/10.1038/s41597-020-00622-y
_version_ 1783575667754926080
author Borgli, Hanna
Thambawita, Vajira
Smedsrud, Pia H.
Hicks, Steven
Jha, Debesh
Eskeland, Sigrun L.
Randel, Kristin Ranheim
Pogorelov, Konstantin
Lux, Mathias
Nguyen, Duc Tien Dang
Johansen, Dag
Griwodz, Carsten
Stensland, Håkon K.
Garcia-Ceja, Enrique
Schmidt, Peter T.
Hammer, Hugo L.
Riegler, Michael A.
Halvorsen, Pål
de Lange, Thomas
author_facet Borgli, Hanna
Thambawita, Vajira
Smedsrud, Pia H.
Hicks, Steven
Jha, Debesh
Eskeland, Sigrun L.
Randel, Kristin Ranheim
Pogorelov, Konstantin
Lux, Mathias
Nguyen, Duc Tien Dang
Johansen, Dag
Griwodz, Carsten
Stensland, Håkon K.
Garcia-Ceja, Enrique
Schmidt, Peter T.
Hammer, Hugo L.
Riegler, Michael A.
Halvorsen, Pål
de Lange, Thomas
author_sort Borgli, Hanna
collection PubMed
description Artificial intelligence is currently a hot topic in medicine. However, medical data is often sparse and hard to obtain due to legal restrictions and lack of medical personnel for the cumbersome and tedious process to manually label training data. These constraints make it difficult to develop systems for automatic analysis, like detecting disease or other lesions. In this respect, this article presents HyperKvasir, the largest image and video dataset of the gastrointestinal tract available today. The data is collected during real gastro- and colonoscopy examinations at Bærum Hospital in Norway and partly labeled by experienced gastrointestinal endoscopists. The dataset contains 110,079 images and 374 videos, and represents anatomical landmarks as well as pathological and normal findings. The total number of images and video frames together is around 1 million. Initial experiments demonstrate the potential benefits of artificial intelligence-based computer-assisted diagnosis systems. The HyperKvasir dataset can play a valuable role in developing better algorithms and computer-assisted examination systems not only for gastro- and colonoscopy, but also for other fields in medicine.
format Online
Article
Text
id pubmed-7455694
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-74556942020-09-03 HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy Borgli, Hanna Thambawita, Vajira Smedsrud, Pia H. Hicks, Steven Jha, Debesh Eskeland, Sigrun L. Randel, Kristin Ranheim Pogorelov, Konstantin Lux, Mathias Nguyen, Duc Tien Dang Johansen, Dag Griwodz, Carsten Stensland, Håkon K. Garcia-Ceja, Enrique Schmidt, Peter T. Hammer, Hugo L. Riegler, Michael A. Halvorsen, Pål de Lange, Thomas Sci Data Data Descriptor Artificial intelligence is currently a hot topic in medicine. However, medical data is often sparse and hard to obtain due to legal restrictions and lack of medical personnel for the cumbersome and tedious process to manually label training data. These constraints make it difficult to develop systems for automatic analysis, like detecting disease or other lesions. In this respect, this article presents HyperKvasir, the largest image and video dataset of the gastrointestinal tract available today. The data is collected during real gastro- and colonoscopy examinations at Bærum Hospital in Norway and partly labeled by experienced gastrointestinal endoscopists. The dataset contains 110,079 images and 374 videos, and represents anatomical landmarks as well as pathological and normal findings. The total number of images and video frames together is around 1 million. Initial experiments demonstrate the potential benefits of artificial intelligence-based computer-assisted diagnosis systems. The HyperKvasir dataset can play a valuable role in developing better algorithms and computer-assisted examination systems not only for gastro- and colonoscopy, but also for other fields in medicine. Nature Publishing Group UK 2020-08-28 /pmc/articles/PMC7455694/ /pubmed/32859981 http://dx.doi.org/10.1038/s41597-020-00622-y Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article.
spellingShingle Data Descriptor
Borgli, Hanna
Thambawita, Vajira
Smedsrud, Pia H.
Hicks, Steven
Jha, Debesh
Eskeland, Sigrun L.
Randel, Kristin Ranheim
Pogorelov, Konstantin
Lux, Mathias
Nguyen, Duc Tien Dang
Johansen, Dag
Griwodz, Carsten
Stensland, Håkon K.
Garcia-Ceja, Enrique
Schmidt, Peter T.
Hammer, Hugo L.
Riegler, Michael A.
Halvorsen, Pål
de Lange, Thomas
HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy
title HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy
title_full HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy
title_fullStr HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy
title_full_unstemmed HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy
title_short HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy
title_sort hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455694/
https://www.ncbi.nlm.nih.gov/pubmed/32859981
http://dx.doi.org/10.1038/s41597-020-00622-y
work_keys_str_mv AT borglihanna hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy
AT thambawitavajira hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy
AT smedsrudpiah hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy
AT hickssteven hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy
AT jhadebesh hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy
AT eskelandsigrunl hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy
AT randelkristinranheim hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy
AT pogorelovkonstantin hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy
AT luxmathias hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy
AT nguyenductiendang hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy
AT johansendag hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy
AT griwodzcarsten hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy
AT stenslandhakonk hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy
AT garciacejaenrique hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy
AT schmidtpetert hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy
AT hammerhugol hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy
AT rieglermichaela hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy
AT halvorsenpal hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy
AT delangethomas hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy