Cargando…
HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy
Artificial intelligence is currently a hot topic in medicine. However, medical data is often sparse and hard to obtain due to legal restrictions and lack of medical personnel for the cumbersome and tedious process to manually label training data. These constraints make it difficult to develop system...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455694/ https://www.ncbi.nlm.nih.gov/pubmed/32859981 http://dx.doi.org/10.1038/s41597-020-00622-y |
_version_ | 1783575667754926080 |
---|---|
author | Borgli, Hanna Thambawita, Vajira Smedsrud, Pia H. Hicks, Steven Jha, Debesh Eskeland, Sigrun L. Randel, Kristin Ranheim Pogorelov, Konstantin Lux, Mathias Nguyen, Duc Tien Dang Johansen, Dag Griwodz, Carsten Stensland, Håkon K. Garcia-Ceja, Enrique Schmidt, Peter T. Hammer, Hugo L. Riegler, Michael A. Halvorsen, Pål de Lange, Thomas |
author_facet | Borgli, Hanna Thambawita, Vajira Smedsrud, Pia H. Hicks, Steven Jha, Debesh Eskeland, Sigrun L. Randel, Kristin Ranheim Pogorelov, Konstantin Lux, Mathias Nguyen, Duc Tien Dang Johansen, Dag Griwodz, Carsten Stensland, Håkon K. Garcia-Ceja, Enrique Schmidt, Peter T. Hammer, Hugo L. Riegler, Michael A. Halvorsen, Pål de Lange, Thomas |
author_sort | Borgli, Hanna |
collection | PubMed |
description | Artificial intelligence is currently a hot topic in medicine. However, medical data is often sparse and hard to obtain due to legal restrictions and lack of medical personnel for the cumbersome and tedious process to manually label training data. These constraints make it difficult to develop systems for automatic analysis, like detecting disease or other lesions. In this respect, this article presents HyperKvasir, the largest image and video dataset of the gastrointestinal tract available today. The data is collected during real gastro- and colonoscopy examinations at Bærum Hospital in Norway and partly labeled by experienced gastrointestinal endoscopists. The dataset contains 110,079 images and 374 videos, and represents anatomical landmarks as well as pathological and normal findings. The total number of images and video frames together is around 1 million. Initial experiments demonstrate the potential benefits of artificial intelligence-based computer-assisted diagnosis systems. The HyperKvasir dataset can play a valuable role in developing better algorithms and computer-assisted examination systems not only for gastro- and colonoscopy, but also for other fields in medicine. |
format | Online Article Text |
id | pubmed-7455694 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-74556942020-09-03 HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy Borgli, Hanna Thambawita, Vajira Smedsrud, Pia H. Hicks, Steven Jha, Debesh Eskeland, Sigrun L. Randel, Kristin Ranheim Pogorelov, Konstantin Lux, Mathias Nguyen, Duc Tien Dang Johansen, Dag Griwodz, Carsten Stensland, Håkon K. Garcia-Ceja, Enrique Schmidt, Peter T. Hammer, Hugo L. Riegler, Michael A. Halvorsen, Pål de Lange, Thomas Sci Data Data Descriptor Artificial intelligence is currently a hot topic in medicine. However, medical data is often sparse and hard to obtain due to legal restrictions and lack of medical personnel for the cumbersome and tedious process to manually label training data. These constraints make it difficult to develop systems for automatic analysis, like detecting disease or other lesions. In this respect, this article presents HyperKvasir, the largest image and video dataset of the gastrointestinal tract available today. The data is collected during real gastro- and colonoscopy examinations at Bærum Hospital in Norway and partly labeled by experienced gastrointestinal endoscopists. The dataset contains 110,079 images and 374 videos, and represents anatomical landmarks as well as pathological and normal findings. The total number of images and video frames together is around 1 million. Initial experiments demonstrate the potential benefits of artificial intelligence-based computer-assisted diagnosis systems. The HyperKvasir dataset can play a valuable role in developing better algorithms and computer-assisted examination systems not only for gastro- and colonoscopy, but also for other fields in medicine. Nature Publishing Group UK 2020-08-28 /pmc/articles/PMC7455694/ /pubmed/32859981 http://dx.doi.org/10.1038/s41597-020-00622-y Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article. |
spellingShingle | Data Descriptor Borgli, Hanna Thambawita, Vajira Smedsrud, Pia H. Hicks, Steven Jha, Debesh Eskeland, Sigrun L. Randel, Kristin Ranheim Pogorelov, Konstantin Lux, Mathias Nguyen, Duc Tien Dang Johansen, Dag Griwodz, Carsten Stensland, Håkon K. Garcia-Ceja, Enrique Schmidt, Peter T. Hammer, Hugo L. Riegler, Michael A. Halvorsen, Pål de Lange, Thomas HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy |
title | HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy |
title_full | HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy |
title_fullStr | HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy |
title_full_unstemmed | HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy |
title_short | HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy |
title_sort | hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy |
topic | Data Descriptor |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455694/ https://www.ncbi.nlm.nih.gov/pubmed/32859981 http://dx.doi.org/10.1038/s41597-020-00622-y |
work_keys_str_mv | AT borglihanna hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy AT thambawitavajira hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy AT smedsrudpiah hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy AT hickssteven hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy AT jhadebesh hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy AT eskelandsigrunl hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy AT randelkristinranheim hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy AT pogorelovkonstantin hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy AT luxmathias hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy AT nguyenductiendang hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy AT johansendag hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy AT griwodzcarsten hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy AT stenslandhakonk hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy AT garciacejaenrique hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy AT schmidtpetert hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy AT hammerhugol hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy AT rieglermichaela hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy AT halvorsenpal hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy AT delangethomas hyperkvasiracomprehensivemulticlassimageandvideodatasetforgastrointestinalendoscopy |