Cargando…

Intracellular sodium elevation reprograms cardiac metabolism

Intracellular Na elevation in the heart is a hallmark of pathologies where both acute and chronic metabolic remodelling occurs. Here, we assess whether acute (75 μM ouabain 100 nM blebbistatin) or chronic myocardial Na(i) load (PLM(3SA) mouse) are causally linked to metabolic remodelling and whether...

Descripción completa

Detalles Bibliográficos
Autores principales: Aksentijević, Dunja, Karlstaedt, Anja, Basalay, Marina V., O’Brien, Brett A., Sanchez-Tatay, David, Eminaga, Seda, Thakker, Alpesh, Tennant, Daniel A., Fuller, William, Eykyn, Thomas R., Taegtmeyer, Heinrich, Shattock, Michael J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455741/
https://www.ncbi.nlm.nih.gov/pubmed/32859897
http://dx.doi.org/10.1038/s41467-020-18160-x
_version_ 1783575678786994176
author Aksentijević, Dunja
Karlstaedt, Anja
Basalay, Marina V.
O’Brien, Brett A.
Sanchez-Tatay, David
Eminaga, Seda
Thakker, Alpesh
Tennant, Daniel A.
Fuller, William
Eykyn, Thomas R.
Taegtmeyer, Heinrich
Shattock, Michael J.
author_facet Aksentijević, Dunja
Karlstaedt, Anja
Basalay, Marina V.
O’Brien, Brett A.
Sanchez-Tatay, David
Eminaga, Seda
Thakker, Alpesh
Tennant, Daniel A.
Fuller, William
Eykyn, Thomas R.
Taegtmeyer, Heinrich
Shattock, Michael J.
author_sort Aksentijević, Dunja
collection PubMed
description Intracellular Na elevation in the heart is a hallmark of pathologies where both acute and chronic metabolic remodelling occurs. Here, we assess whether acute (75 μM ouabain 100 nM blebbistatin) or chronic myocardial Na(i) load (PLM(3SA) mouse) are causally linked to metabolic remodelling and whether the failing heart shares a common Na-mediated metabolic ‘fingerprint’. Control (PLM(WT)), transgenic (PLM(3SA)), ouabain-treated and hypertrophied Langendorff-perfused mouse hearts are studied by (23)Na, (31)P, (13)C NMR followed by (1)H-NMR metabolomic profiling. Elevated Na(i) leads to common adaptive metabolic alterations preceding energetic impairment: a switch from fatty acid to carbohydrate metabolism and changes in steady-state metabolite concentrations (glycolytic, anaplerotic, Krebs cycle intermediates). Inhibition of mitochondrial Na/Ca exchanger by CGP37157 ameliorates the metabolic changes. In silico modelling indicates altered metabolic fluxes (Krebs cycle, fatty acid, carbohydrate, amino acid metabolism). Prevention of Na(i) overload or inhibition of Na/Ca(mito) may be a new approach to ameliorate metabolic dysregulation in heart failure.
format Online
Article
Text
id pubmed-7455741
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-74557412020-09-04 Intracellular sodium elevation reprograms cardiac metabolism Aksentijević, Dunja Karlstaedt, Anja Basalay, Marina V. O’Brien, Brett A. Sanchez-Tatay, David Eminaga, Seda Thakker, Alpesh Tennant, Daniel A. Fuller, William Eykyn, Thomas R. Taegtmeyer, Heinrich Shattock, Michael J. Nat Commun Article Intracellular Na elevation in the heart is a hallmark of pathologies where both acute and chronic metabolic remodelling occurs. Here, we assess whether acute (75 μM ouabain 100 nM blebbistatin) or chronic myocardial Na(i) load (PLM(3SA) mouse) are causally linked to metabolic remodelling and whether the failing heart shares a common Na-mediated metabolic ‘fingerprint’. Control (PLM(WT)), transgenic (PLM(3SA)), ouabain-treated and hypertrophied Langendorff-perfused mouse hearts are studied by (23)Na, (31)P, (13)C NMR followed by (1)H-NMR metabolomic profiling. Elevated Na(i) leads to common adaptive metabolic alterations preceding energetic impairment: a switch from fatty acid to carbohydrate metabolism and changes in steady-state metabolite concentrations (glycolytic, anaplerotic, Krebs cycle intermediates). Inhibition of mitochondrial Na/Ca exchanger by CGP37157 ameliorates the metabolic changes. In silico modelling indicates altered metabolic fluxes (Krebs cycle, fatty acid, carbohydrate, amino acid metabolism). Prevention of Na(i) overload or inhibition of Na/Ca(mito) may be a new approach to ameliorate metabolic dysregulation in heart failure. Nature Publishing Group UK 2020-08-28 /pmc/articles/PMC7455741/ /pubmed/32859897 http://dx.doi.org/10.1038/s41467-020-18160-x Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Aksentijević, Dunja
Karlstaedt, Anja
Basalay, Marina V.
O’Brien, Brett A.
Sanchez-Tatay, David
Eminaga, Seda
Thakker, Alpesh
Tennant, Daniel A.
Fuller, William
Eykyn, Thomas R.
Taegtmeyer, Heinrich
Shattock, Michael J.
Intracellular sodium elevation reprograms cardiac metabolism
title Intracellular sodium elevation reprograms cardiac metabolism
title_full Intracellular sodium elevation reprograms cardiac metabolism
title_fullStr Intracellular sodium elevation reprograms cardiac metabolism
title_full_unstemmed Intracellular sodium elevation reprograms cardiac metabolism
title_short Intracellular sodium elevation reprograms cardiac metabolism
title_sort intracellular sodium elevation reprograms cardiac metabolism
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455741/
https://www.ncbi.nlm.nih.gov/pubmed/32859897
http://dx.doi.org/10.1038/s41467-020-18160-x
work_keys_str_mv AT aksentijevicdunja intracellularsodiumelevationreprogramscardiacmetabolism
AT karlstaedtanja intracellularsodiumelevationreprogramscardiacmetabolism
AT basalaymarinav intracellularsodiumelevationreprogramscardiacmetabolism
AT obrienbretta intracellularsodiumelevationreprogramscardiacmetabolism
AT sancheztataydavid intracellularsodiumelevationreprogramscardiacmetabolism
AT eminagaseda intracellularsodiumelevationreprogramscardiacmetabolism
AT thakkeralpesh intracellularsodiumelevationreprogramscardiacmetabolism
AT tennantdaniela intracellularsodiumelevationreprogramscardiacmetabolism
AT fullerwilliam intracellularsodiumelevationreprogramscardiacmetabolism
AT eykynthomasr intracellularsodiumelevationreprogramscardiacmetabolism
AT taegtmeyerheinrich intracellularsodiumelevationreprogramscardiacmetabolism
AT shattockmichaelj intracellularsodiumelevationreprogramscardiacmetabolism