Cargando…
Dynamics identification and forecasting of COVID-19 by switching Kalman filters
The COVID-19 pandemic has captivated scientific activity since its early days. Particular attention has been dedicated to the identification of underlying dynamics and prediction of future trend. In this work, a switching Kalman filter formalism is applied on dynamics learning and forecasting of the...
Autores principales: | Zeng, Xiaoshu, Ghanem, Roger |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455787/ https://www.ncbi.nlm.nih.gov/pubmed/32904528 http://dx.doi.org/10.1007/s00466-020-01911-4 |
Ejemplares similares
-
Application of Kalman Filter Model in the Landslide Deformation Forecast
por: Lu, Fumin, et al.
Publicado: (2020) -
Forecasting, structural time series models and the Kalman filter
por: Harvey, Andrew C
Publicado: (1990) -
Multivariate Kalman filtering for spatio-temporal processes
por: Ferreira, Guillermo, et al.
Publicado: (2022) -
Kalman filter approach to real options with active learning
por: Sund, Sebastian, et al.
Publicado: (2022) -
Fuzzy State Transition and Kalman Filter Applied in Short-Term Traffic Flow Forecasting
por: Ming-jun, Deng, et al.
Publicado: (2015)