Cargando…
binomialRF: interpretable combinatoric efficiency of random forests to identify biomarker interactions
BACKGROUND: In this era of data science-driven bioinformatics, machine learning research has focused on feature selection as users want more interpretation and post-hoc analyses for biomarker detection. However, when there are more features (i.e., transcripts) than samples (i.e., mice or human sampl...
Autores principales: | Rachid Zaim, Samir, Kenost, Colleen, Berghout, Joanne, Chiu, Wesley, Wilson, Liam, Zhang, Hao Helen, Lussier, Yves A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456085/ https://www.ncbi.nlm.nih.gov/pubmed/32859146 http://dx.doi.org/10.1186/s12859-020-03718-9 |
Ejemplares similares
-
Correction to: binomialRF: interpretable combinatoric efficiency of random forests to identify biomarker interactions
por: Zaim, Samir Rachid, et al.
Publicado: (2020) -
Evaluating single-subject study methods for personal transcriptomic interpretations to advance precision medicine
por: Rachid Zaim, Samir, et al.
Publicado: (2019) -
‘Single-subject studies’-derived analyses unveil altered biomechanisms between very small cohorts: implications for rare diseases
por: Aberasturi, Dillon, et al.
Publicado: (2021) -
Developing a ‘personalome’ for precision medicine: emerging methods that compute interpretable effect sizes from single-subject transcriptomes
por: Vitali, Francesca, et al.
Publicado: (2017) -
Personalized beyond Precision: Designing Unbiased Gold Standards to Improve Single-Subject Studies of Personal Genome Dynamics from Gene Products
por: Zaim, Samir Rachid, et al.
Publicado: (2020)