Cargando…

Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps

In plants, environmental stressors trigger plasma membrane depolarizations. Being electrically interconnected via plasmodesmata, proper functional dissection of electrical signaling by electrophysiology is basically impossible. The green alga Chlamydomonas reinhardtii evolved blue light-excited chan...

Descripción completa

Detalles Bibliográficos
Autores principales: Reyer, Antonella, Häßler, Melanie, Scherzer, Sönke, Huang, Shouguang, Pedersen, Jesper Torbøl, Al-Rasheid, Khaled A. S., Bamberg, Ernst, Palmgren, Michael, Dreyer, Ingo, Nagel, Georg, Hedrich, Rainer, Becker, Dirk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456130/
https://www.ncbi.nlm.nih.gov/pubmed/32788371
http://dx.doi.org/10.1073/pnas.2005626117
_version_ 1783575752173682688
author Reyer, Antonella
Häßler, Melanie
Scherzer, Sönke
Huang, Shouguang
Pedersen, Jesper Torbøl
Al-Rasheid, Khaled A. S.
Bamberg, Ernst
Palmgren, Michael
Dreyer, Ingo
Nagel, Georg
Hedrich, Rainer
Becker, Dirk
author_facet Reyer, Antonella
Häßler, Melanie
Scherzer, Sönke
Huang, Shouguang
Pedersen, Jesper Torbøl
Al-Rasheid, Khaled A. S.
Bamberg, Ernst
Palmgren, Michael
Dreyer, Ingo
Nagel, Georg
Hedrich, Rainer
Becker, Dirk
author_sort Reyer, Antonella
collection PubMed
description In plants, environmental stressors trigger plasma membrane depolarizations. Being electrically interconnected via plasmodesmata, proper functional dissection of electrical signaling by electrophysiology is basically impossible. The green alga Chlamydomonas reinhardtii evolved blue light-excited channelrhodopsins (ChR1, 2) to navigate. When expressed in excitable nerve and muscle cells, ChRs can be used to control the membrane potential via illumination. In Arabidopsis plants, we used the algal ChR2-light switches as tools to stimulate plasmodesmata-interconnected photosynthetic cell networks by blue light and monitor the subsequent plasma membrane electrical responses. Blue-dependent stimulations of ChR2 expressing mesophyll cells, resting around −160 to −180 mV, reproducibly depolarized the membrane potential by 95 mV on average. Following excitation, mesophyll cells recovered their prestimulus potential not without transiently passing a hyperpolarization state. By combining optogenetics with voltage-sensing microelectrodes, we demonstrate that plant plasma membrane AHA-type H(+)-ATPase governs the gross repolarization process. AHA2 protein biochemistry and functional expression analysis in Xenopus oocytes indicates that the capacity of this H(+) pump to recharge the membrane potential is rooted in its voltage- and pH-dependent functional anatomy. Thus, ChR2 optogenetics appears well suited to noninvasively expose plant cells to signal specific depolarization signatures. From the responses we learn about the molecular processes, plants employ to channel stress-associated membrane excitations into physiological responses.
format Online
Article
Text
id pubmed-7456130
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-74561302020-09-09 Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps Reyer, Antonella Häßler, Melanie Scherzer, Sönke Huang, Shouguang Pedersen, Jesper Torbøl Al-Rasheid, Khaled A. S. Bamberg, Ernst Palmgren, Michael Dreyer, Ingo Nagel, Georg Hedrich, Rainer Becker, Dirk Proc Natl Acad Sci U S A Biological Sciences In plants, environmental stressors trigger plasma membrane depolarizations. Being electrically interconnected via plasmodesmata, proper functional dissection of electrical signaling by electrophysiology is basically impossible. The green alga Chlamydomonas reinhardtii evolved blue light-excited channelrhodopsins (ChR1, 2) to navigate. When expressed in excitable nerve and muscle cells, ChRs can be used to control the membrane potential via illumination. In Arabidopsis plants, we used the algal ChR2-light switches as tools to stimulate plasmodesmata-interconnected photosynthetic cell networks by blue light and monitor the subsequent plasma membrane electrical responses. Blue-dependent stimulations of ChR2 expressing mesophyll cells, resting around −160 to −180 mV, reproducibly depolarized the membrane potential by 95 mV on average. Following excitation, mesophyll cells recovered their prestimulus potential not without transiently passing a hyperpolarization state. By combining optogenetics with voltage-sensing microelectrodes, we demonstrate that plant plasma membrane AHA-type H(+)-ATPase governs the gross repolarization process. AHA2 protein biochemistry and functional expression analysis in Xenopus oocytes indicates that the capacity of this H(+) pump to recharge the membrane potential is rooted in its voltage- and pH-dependent functional anatomy. Thus, ChR2 optogenetics appears well suited to noninvasively expose plant cells to signal specific depolarization signatures. From the responses we learn about the molecular processes, plants employ to channel stress-associated membrane excitations into physiological responses. National Academy of Sciences 2020-08-25 2020-08-11 /pmc/articles/PMC7456130/ /pubmed/32788371 http://dx.doi.org/10.1073/pnas.2005626117 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Reyer, Antonella
Häßler, Melanie
Scherzer, Sönke
Huang, Shouguang
Pedersen, Jesper Torbøl
Al-Rasheid, Khaled A. S.
Bamberg, Ernst
Palmgren, Michael
Dreyer, Ingo
Nagel, Georg
Hedrich, Rainer
Becker, Dirk
Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps
title Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps
title_full Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps
title_fullStr Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps
title_full_unstemmed Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps
title_short Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps
title_sort channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456130/
https://www.ncbi.nlm.nih.gov/pubmed/32788371
http://dx.doi.org/10.1073/pnas.2005626117
work_keys_str_mv AT reyerantonella channelrhodopsinmediatedoptogeneticshighlightsacentralroleofdepolarizationdependentplantprotonpumps
AT haßlermelanie channelrhodopsinmediatedoptogeneticshighlightsacentralroleofdepolarizationdependentplantprotonpumps
AT scherzersonke channelrhodopsinmediatedoptogeneticshighlightsacentralroleofdepolarizationdependentplantprotonpumps
AT huangshouguang channelrhodopsinmediatedoptogeneticshighlightsacentralroleofdepolarizationdependentplantprotonpumps
AT pedersenjespertorbøl channelrhodopsinmediatedoptogeneticshighlightsacentralroleofdepolarizationdependentplantprotonpumps
AT alrasheidkhaledas channelrhodopsinmediatedoptogeneticshighlightsacentralroleofdepolarizationdependentplantprotonpumps
AT bambergernst channelrhodopsinmediatedoptogeneticshighlightsacentralroleofdepolarizationdependentplantprotonpumps
AT palmgrenmichael channelrhodopsinmediatedoptogeneticshighlightsacentralroleofdepolarizationdependentplantprotonpumps
AT dreyeringo channelrhodopsinmediatedoptogeneticshighlightsacentralroleofdepolarizationdependentplantprotonpumps
AT nagelgeorg channelrhodopsinmediatedoptogeneticshighlightsacentralroleofdepolarizationdependentplantprotonpumps
AT hedrichrainer channelrhodopsinmediatedoptogeneticshighlightsacentralroleofdepolarizationdependentplantprotonpumps
AT beckerdirk channelrhodopsinmediatedoptogeneticshighlightsacentralroleofdepolarizationdependentplantprotonpumps