Cargando…

Identifying collagen VI as a target of fibrotic diseases regulated by CREBBP/EP300

Fibrotic diseases remain a major cause of morbidity and mortality, yet there are few effective therapies. The underlying pathology of all fibrotic conditions is the activity of myofibroblasts. Using cells from freshly excised disease tissue from patients with Dupuytren’s disease (DD), a localized fi...

Descripción completa

Detalles Bibliográficos
Autores principales: Williams, Lynn M., McCann, Fiona E., Cabrita, Marisa A., Layton, Thomas, Cribbs, Adam, Knezevic, Bogdan, Fang, Hai, Knight, Julian, Zhang, Mingjun, Fischer, Roman, Bonham, Sarah, Steenbeek, Leenart M., Yang, Nan, Sood, Manu, Bainbridge, Chris, Warwick, David, Harry, Lorraine, Davidson, Dominique, Xie, Weilin, Sundstrӧm, Michael, Feldmann, Marc, Nanchahal, Jagdeep
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456151/
https://www.ncbi.nlm.nih.gov/pubmed/32759223
http://dx.doi.org/10.1073/pnas.2004281117
Descripción
Sumario:Fibrotic diseases remain a major cause of morbidity and mortality, yet there are few effective therapies. The underlying pathology of all fibrotic conditions is the activity of myofibroblasts. Using cells from freshly excised disease tissue from patients with Dupuytren’s disease (DD), a localized fibrotic disorder of the palm, we sought to identify new therapeutic targets for fibrotic disease. We hypothesized that the persistent activity of myofibroblasts in fibrotic diseases might involve epigenetic modifications. Using a validated genetics-led target prioritization algorithm (Pi) of genome wide association studies (GWAS) data and a broad screen of epigenetic inhibitors, we found that the acetyltransferase CREBBP/EP300 is a major regulator of contractility and extracellular matrix production via control of H3K27 acetylation at the profibrotic genes, ACTA2 and COL1A1. Genomic analysis revealed that EP300 is highly enriched at enhancers associated with genes involved in multiple profibrotic pathways, and broad transcriptomic and proteomic profiling of CREBBP/EP300 inhibition by the chemical probe SGC-CBP30 identified collagen VI (Col VI) as a prominent downstream regulator of myofibroblast activity. Targeted Col VI knockdown results in significant decrease in profibrotic functions, including myofibroblast contractile force, extracellular matrix (ECM) production, chemotaxis, and wound healing. Further evidence for Col VI as a major determinant of fibrosis is its abundant expression within Dupuytren’s nodules and also in the fibrotic foci of idiopathic pulmonary fibrosis (IPF). Thus, Col VI may represent a tractable therapeutic target across a range of fibrotic disorders.