Cargando…
ADRML: anticancer drug response prediction using manifold learning
One of the prominent challenges in precision medicine is to select the most appropriate treatment strategy for each patient based on the personalized information. The availability of massive data about drugs and cell lines facilitates the possibility of proposing efficient computational models for p...
Autores principales: | Ahmadi Moughari, Fatemeh, Eslahchi, Changiz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456328/ https://www.ncbi.nlm.nih.gov/pubmed/32859983 http://dx.doi.org/10.1038/s41598-020-71257-7 |
Ejemplares similares
-
Author Correction: ADRML: anticancer drug response prediction using manifold learning
por: Moughari, Fatemeh Ahmadi, et al.
Publicado: (2020) -
A computational method for drug sensitivity prediction of cancer cell lines based on various molecular information
por: Ahmadi Moughari, Fatemeh, et al.
Publicado: (2021) -
DisCoVering potential candidates of RNAi-based therapy for COVID-19 using computational methods
por: Rohani, Narjes, et al.
Publicado: (2021) -
A novel algorithm for parameter estimation of Hidden Markov Model inspired by Ant Colony Optimization
por: Emdadi, Akram, et al.
Publicado: (2019) -
CDAP: An Online Package for Evaluation of Complex Detection Methods
por: A. Maddi, Ali M., et al.
Publicado: (2019)