Cargando…

Growth parameter k and location affect body size responses to spatial protection by exploited rockfishes

For many fish taxa, trophic position and relative fecundity increase with body size, yet fisheries remove the largest individuals, altering food webs and reducing population productivity. Marine reserves and other forms of spatial protection can help mitigate this problem, but the effectiveness of t...

Descripción completa

Detalles Bibliográficos
Autores principales: McGreer, Madeleine, Frid, Alejandro, Blaine, Tristan, Hankewich, Sandie, Mason, Ernest, Reid, Mike, Kobluk, Hannah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456528/
https://www.ncbi.nlm.nih.gov/pubmed/32913682
http://dx.doi.org/10.7717/peerj.9825
_version_ 1783575815134380032
author McGreer, Madeleine
Frid, Alejandro
Blaine, Tristan
Hankewich, Sandie
Mason, Ernest
Reid, Mike
Kobluk, Hannah
author_facet McGreer, Madeleine
Frid, Alejandro
Blaine, Tristan
Hankewich, Sandie
Mason, Ernest
Reid, Mike
Kobluk, Hannah
author_sort McGreer, Madeleine
collection PubMed
description For many fish taxa, trophic position and relative fecundity increase with body size, yet fisheries remove the largest individuals, altering food webs and reducing population productivity. Marine reserves and other forms of spatial protection can help mitigate this problem, but the effectiveness of these management tools may vary interspecifically and spatially. Using visual survey data collected on the Central Coast of British Columbia, for 12 species of exploited rockfish we found that body size responses to spatial fishery closures depended on interspecific variation in growth parameter k (the rate at which the asymptotic body size is approached) and on location. For two closures, relative body sizes were larger at protected than at adjacent fished sites, and these differences were greater for species with lower k values. Reduced fishery mortality likely drove these results, as an unfished species did not respond to spatial protection. For three closures, however, body sizes did not differ between protected and adjacent fished sites, and for another closure species with higher k values were larger at fished than at protected sites while species with lower k values had similar sizes in both treatments. Variation in the age of closures is unlikely to have influenced results, as most data were collected when closures were 13 to 15-years-old. Rather, the lack of larger fish inside four of six spatial fishery closures potentially reflects a combination of smaller size of the area protected, poor fisher compliance, and lower oceanographic productivity. Interspecific differences in movement behavior did not affect body size responses to spatial protection. To improve understanding, additional research should be conducted at deeper depths encompassing the distribution of older, larger fish. Our study—which was conceptualized and executed by an alliance of Indigenous peoples seeking to restore rockfishes—illustrates how life history and behavioral theory provide a useful lens for framing and interpreting species differences in responses to spatial protection.
format Online
Article
Text
id pubmed-7456528
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-74565282020-09-09 Growth parameter k and location affect body size responses to spatial protection by exploited rockfishes McGreer, Madeleine Frid, Alejandro Blaine, Tristan Hankewich, Sandie Mason, Ernest Reid, Mike Kobluk, Hannah PeerJ Fisheries and Fish Science For many fish taxa, trophic position and relative fecundity increase with body size, yet fisheries remove the largest individuals, altering food webs and reducing population productivity. Marine reserves and other forms of spatial protection can help mitigate this problem, but the effectiveness of these management tools may vary interspecifically and spatially. Using visual survey data collected on the Central Coast of British Columbia, for 12 species of exploited rockfish we found that body size responses to spatial fishery closures depended on interspecific variation in growth parameter k (the rate at which the asymptotic body size is approached) and on location. For two closures, relative body sizes were larger at protected than at adjacent fished sites, and these differences were greater for species with lower k values. Reduced fishery mortality likely drove these results, as an unfished species did not respond to spatial protection. For three closures, however, body sizes did not differ between protected and adjacent fished sites, and for another closure species with higher k values were larger at fished than at protected sites while species with lower k values had similar sizes in both treatments. Variation in the age of closures is unlikely to have influenced results, as most data were collected when closures were 13 to 15-years-old. Rather, the lack of larger fish inside four of six spatial fishery closures potentially reflects a combination of smaller size of the area protected, poor fisher compliance, and lower oceanographic productivity. Interspecific differences in movement behavior did not affect body size responses to spatial protection. To improve understanding, additional research should be conducted at deeper depths encompassing the distribution of older, larger fish. Our study—which was conceptualized and executed by an alliance of Indigenous peoples seeking to restore rockfishes—illustrates how life history and behavioral theory provide a useful lens for framing and interpreting species differences in responses to spatial protection. PeerJ Inc. 2020-08-27 /pmc/articles/PMC7456528/ /pubmed/32913682 http://dx.doi.org/10.7717/peerj.9825 Text en ©2020 McGreer et al. https://creativecommons.org/licenses/by-nc/4.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0) , which permits using, remixing, and building upon the work non-commercially, as long as it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Fisheries and Fish Science
McGreer, Madeleine
Frid, Alejandro
Blaine, Tristan
Hankewich, Sandie
Mason, Ernest
Reid, Mike
Kobluk, Hannah
Growth parameter k and location affect body size responses to spatial protection by exploited rockfishes
title Growth parameter k and location affect body size responses to spatial protection by exploited rockfishes
title_full Growth parameter k and location affect body size responses to spatial protection by exploited rockfishes
title_fullStr Growth parameter k and location affect body size responses to spatial protection by exploited rockfishes
title_full_unstemmed Growth parameter k and location affect body size responses to spatial protection by exploited rockfishes
title_short Growth parameter k and location affect body size responses to spatial protection by exploited rockfishes
title_sort growth parameter k and location affect body size responses to spatial protection by exploited rockfishes
topic Fisheries and Fish Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456528/
https://www.ncbi.nlm.nih.gov/pubmed/32913682
http://dx.doi.org/10.7717/peerj.9825
work_keys_str_mv AT mcgreermadeleine growthparameterkandlocationaffectbodysizeresponsestospatialprotectionbyexploitedrockfishes
AT fridalejandro growthparameterkandlocationaffectbodysizeresponsestospatialprotectionbyexploitedrockfishes
AT blainetristan growthparameterkandlocationaffectbodysizeresponsestospatialprotectionbyexploitedrockfishes
AT hankewichsandie growthparameterkandlocationaffectbodysizeresponsestospatialprotectionbyexploitedrockfishes
AT masonernest growthparameterkandlocationaffectbodysizeresponsestospatialprotectionbyexploitedrockfishes
AT reidmike growthparameterkandlocationaffectbodysizeresponsestospatialprotectionbyexploitedrockfishes
AT koblukhannah growthparameterkandlocationaffectbodysizeresponsestospatialprotectionbyexploitedrockfishes