Cargando…
Unsupervised learning for county-level typological classification for COVID-19 research
The analysis of county-level COVID-19 pandemic data faces computational and analytic challenges, particularly when considering the heterogeneity of data sources with variation in geographic, demographic, and socioeconomic factors between counties. This study presents a method to join relevant data f...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456591/ https://www.ncbi.nlm.nih.gov/pubmed/32995759 http://dx.doi.org/10.1016/j.ibmed.2020.100002 |
Sumario: | The analysis of county-level COVID-19 pandemic data faces computational and analytic challenges, particularly when considering the heterogeneity of data sources with variation in geographic, demographic, and socioeconomic factors between counties. This study presents a method to join relevant data from different sources to investigate underlying typological effects and disparities across typologies. Both consistencies within and variations between urban and non-urban counties are demonstrated. When different county types were stratified by age group distribution, this method identifies significant community mobility differences occurring before, during, and after the shutdown. Counties with a larger proportion of young adults (age 20–24) have higher baseline mobility and had the least mobility reduction during the lockdown. |
---|