Cargando…

Respiratory Rhythm, Autonomic Modulation, and the Spectrum of Emotions: The Future of Emotion Recognition and Modulation

Pulmonary ventilation and respiration are considered to be primarily involved in oxygenation of blood for oxygen delivery to cells throughout the body for metabolic purposes. Other pulmonary physiological observations, such as respiratory sinus arrhythmia, Hering Brewer reflex, cardiorespiratory syn...

Descripción completa

Detalles Bibliográficos
Autores principales: Jerath, Ravinder, Beveridge, Connor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7457013/
https://www.ncbi.nlm.nih.gov/pubmed/32922338
http://dx.doi.org/10.3389/fpsyg.2020.01980
Descripción
Sumario:Pulmonary ventilation and respiration are considered to be primarily involved in oxygenation of blood for oxygen delivery to cells throughout the body for metabolic purposes. Other pulmonary physiological observations, such as respiratory sinus arrhythmia, Hering Brewer reflex, cardiorespiratory synchronization, and the heart rate variability (HRV) relationship with breathing rhythm, lack complete explanations of physiological/functional significance. The spectrum of waveforms of breathing activity correlate to anxiety, depression, anger, stress, and other positive and negative emotions. Respiratory pattern has been thought not only to be influenced by emotion but to itself influence emotion in a bi-directional relationship between the body and the mind. In order to show how filling in gaps in understanding could lead to certain future developments in mind–body medicine, biofeedback, and personal health monitoring, we review and discuss empirical work and tracings to express the vital role of bodily rhythms in influencing emotion, autonomic nervous system activity, and even general neural activity. Future developments in measurement and psychophysiological understanding of the pattern of breathing in combination with other parameters such as HRV, cardiorespiratory synchronization, and skin conductivity may allow for biometric monitoring systems to one day accurately predict affective state and even affective disorders such as anxiety. Better affective prediction based on recent research when incorporated into personal health monitoring devices could greatly improve public mental health by providing at-home biofeedback for greater understanding of one’s mental state and for mind–body affective treatments such as breathing exercises.