Cargando…
Measles Virus Hemagglutinin Protein Establishes a Specific Interaction With the Extreme N-Terminal Region of Human Signaling Lymphocytic Activation Molecule to Enhance Infection
Measles virus (MV) is a human pathogen that is classified in the genus Morbillivirus in the family Paramyxoviridae together with several non-human animal morbilliviruses. They cause severe systemic infections by using signaling lymphocytic activation molecule (SLAM) and poliovirus receptor-like 4 ex...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7457132/ https://www.ncbi.nlm.nih.gov/pubmed/32922371 http://dx.doi.org/10.3389/fmicb.2020.01830 |
_version_ | 1783575942284705792 |
---|---|
author | Seki, Fumio Yamamoto, Yuta Fukuhara, Hideo Ohishi, Kazue Maruyama, Tadashi Maenaka, Katsumi Tokiwa, Hiroaki Takeda, Makoto |
author_facet | Seki, Fumio Yamamoto, Yuta Fukuhara, Hideo Ohishi, Kazue Maruyama, Tadashi Maenaka, Katsumi Tokiwa, Hiroaki Takeda, Makoto |
author_sort | Seki, Fumio |
collection | PubMed |
description | Measles virus (MV) is a human pathogen that is classified in the genus Morbillivirus in the family Paramyxoviridae together with several non-human animal morbilliviruses. They cause severe systemic infections by using signaling lymphocytic activation molecule (SLAM) and poliovirus receptor-like 4 expressed on immune and epithelial cells, respectively, as receptors. The viral hemagglutinin (H) protein is responsible for the receptor-binding. Previously determined structures of MV-H and SLAM complexes revealed a major binding interface between the SLAM V domain and MV-H with four binding components (sites 1–4) in the interface. We studied the MV-H and human SLAM (hSLAM) complex structure in further detail by in silico analyses and determined missing regions or residues in the previously determined complex structures. These analyses showed that, in addition to sites 1–4, MV-H establishes a unique interaction with the extreme N-terminal region (ExNTR) of hSLAM. The first principles calculation-based fragment molecular orbital computation method revealed that methionine at position 29 (hSLAM-Met29) is the key residue for the interaction. hSLAM-Met29 was predicted to establish a CH-π interaction with phenylalanine at position 549 of MV-H (MVH-Phe549). A cell-cell fusion assay showed that the hSLAM-Met29 and MVH-Phe549 interaction is important for hSLAM-dependent MV membrane fusion. Furthermore, Jurkat cell lines expressing hSLAM with or without Met29 and recombinant MV possessing the H protein with or without Phe549 showed that the hSLAM-Met29 and MVH-Phe549 interaction enhanced hSLAM-dependent MV infection by ~10-fold. We speculate that in the evolutionary history of morbilliviruses, this interaction may have contributed to MV adaptation to humans because this interaction is unique for MV and only MV uses hSLAM efficiently among morbilliviruses. |
format | Online Article Text |
id | pubmed-7457132 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74571322020-09-11 Measles Virus Hemagglutinin Protein Establishes a Specific Interaction With the Extreme N-Terminal Region of Human Signaling Lymphocytic Activation Molecule to Enhance Infection Seki, Fumio Yamamoto, Yuta Fukuhara, Hideo Ohishi, Kazue Maruyama, Tadashi Maenaka, Katsumi Tokiwa, Hiroaki Takeda, Makoto Front Microbiol Microbiology Measles virus (MV) is a human pathogen that is classified in the genus Morbillivirus in the family Paramyxoviridae together with several non-human animal morbilliviruses. They cause severe systemic infections by using signaling lymphocytic activation molecule (SLAM) and poliovirus receptor-like 4 expressed on immune and epithelial cells, respectively, as receptors. The viral hemagglutinin (H) protein is responsible for the receptor-binding. Previously determined structures of MV-H and SLAM complexes revealed a major binding interface between the SLAM V domain and MV-H with four binding components (sites 1–4) in the interface. We studied the MV-H and human SLAM (hSLAM) complex structure in further detail by in silico analyses and determined missing regions or residues in the previously determined complex structures. These analyses showed that, in addition to sites 1–4, MV-H establishes a unique interaction with the extreme N-terminal region (ExNTR) of hSLAM. The first principles calculation-based fragment molecular orbital computation method revealed that methionine at position 29 (hSLAM-Met29) is the key residue for the interaction. hSLAM-Met29 was predicted to establish a CH-π interaction with phenylalanine at position 549 of MV-H (MVH-Phe549). A cell-cell fusion assay showed that the hSLAM-Met29 and MVH-Phe549 interaction is important for hSLAM-dependent MV membrane fusion. Furthermore, Jurkat cell lines expressing hSLAM with or without Met29 and recombinant MV possessing the H protein with or without Phe549 showed that the hSLAM-Met29 and MVH-Phe549 interaction enhanced hSLAM-dependent MV infection by ~10-fold. We speculate that in the evolutionary history of morbilliviruses, this interaction may have contributed to MV adaptation to humans because this interaction is unique for MV and only MV uses hSLAM efficiently among morbilliviruses. Frontiers Media S.A. 2020-08-14 /pmc/articles/PMC7457132/ /pubmed/32922371 http://dx.doi.org/10.3389/fmicb.2020.01830 Text en Copyright © 2020 Seki, Yamamoto, Fukuhara, Ohishi, Maruyama, Maenaka, Tokiwa and Takeda. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Seki, Fumio Yamamoto, Yuta Fukuhara, Hideo Ohishi, Kazue Maruyama, Tadashi Maenaka, Katsumi Tokiwa, Hiroaki Takeda, Makoto Measles Virus Hemagglutinin Protein Establishes a Specific Interaction With the Extreme N-Terminal Region of Human Signaling Lymphocytic Activation Molecule to Enhance Infection |
title | Measles Virus Hemagglutinin Protein Establishes a Specific Interaction With the Extreme N-Terminal Region of Human Signaling Lymphocytic Activation Molecule to Enhance Infection |
title_full | Measles Virus Hemagglutinin Protein Establishes a Specific Interaction With the Extreme N-Terminal Region of Human Signaling Lymphocytic Activation Molecule to Enhance Infection |
title_fullStr | Measles Virus Hemagglutinin Protein Establishes a Specific Interaction With the Extreme N-Terminal Region of Human Signaling Lymphocytic Activation Molecule to Enhance Infection |
title_full_unstemmed | Measles Virus Hemagglutinin Protein Establishes a Specific Interaction With the Extreme N-Terminal Region of Human Signaling Lymphocytic Activation Molecule to Enhance Infection |
title_short | Measles Virus Hemagglutinin Protein Establishes a Specific Interaction With the Extreme N-Terminal Region of Human Signaling Lymphocytic Activation Molecule to Enhance Infection |
title_sort | measles virus hemagglutinin protein establishes a specific interaction with the extreme n-terminal region of human signaling lymphocytic activation molecule to enhance infection |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7457132/ https://www.ncbi.nlm.nih.gov/pubmed/32922371 http://dx.doi.org/10.3389/fmicb.2020.01830 |
work_keys_str_mv | AT sekifumio measlesvirushemagglutininproteinestablishesaspecificinteractionwiththeextrementerminalregionofhumansignalinglymphocyticactivationmoleculetoenhanceinfection AT yamamotoyuta measlesvirushemagglutininproteinestablishesaspecificinteractionwiththeextrementerminalregionofhumansignalinglymphocyticactivationmoleculetoenhanceinfection AT fukuharahideo measlesvirushemagglutininproteinestablishesaspecificinteractionwiththeextrementerminalregionofhumansignalinglymphocyticactivationmoleculetoenhanceinfection AT ohishikazue measlesvirushemagglutininproteinestablishesaspecificinteractionwiththeextrementerminalregionofhumansignalinglymphocyticactivationmoleculetoenhanceinfection AT maruyamatadashi measlesvirushemagglutininproteinestablishesaspecificinteractionwiththeextrementerminalregionofhumansignalinglymphocyticactivationmoleculetoenhanceinfection AT maenakakatsumi measlesvirushemagglutininproteinestablishesaspecificinteractionwiththeextrementerminalregionofhumansignalinglymphocyticactivationmoleculetoenhanceinfection AT tokiwahiroaki measlesvirushemagglutininproteinestablishesaspecificinteractionwiththeextrementerminalregionofhumansignalinglymphocyticactivationmoleculetoenhanceinfection AT takedamakoto measlesvirushemagglutininproteinestablishesaspecificinteractionwiththeextrementerminalregionofhumansignalinglymphocyticactivationmoleculetoenhanceinfection |