Cargando…

How to Find Candidate Drug-targets for Antiepileptogenic Therapy?

Although over 25 antiepileptic drugs (AEDs) have become currently available for clinical use, the incidence of epilepsy worldwide and the proportions of drug-resistant epilepsy among them are not significantly reduced during the past decades. Traditional screens for AEDs have been mainly focused on...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Nian, Lin, Xing-jian, Di, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bentham Science Publishers 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7457424/
https://www.ncbi.nlm.nih.gov/pubmed/31989901
http://dx.doi.org/10.2174/1570159X18666200128124338
Descripción
Sumario:Although over 25 antiepileptic drugs (AEDs) have become currently available for clinical use, the incidence of epilepsy worldwide and the proportions of drug-resistant epilepsy among them are not significantly reduced during the past decades. Traditional screens for AEDs have been mainly focused on their anti-ictogenic roles, and their efficacies primarily depend on suppressing neuronal excitability or enhancing inhibitory neuronal activity, almost without the influence on the epileptogenesis or with inconsistent results from different studies. Epileptogenesis refers to the pathological process of a brain from its normal status to the alterations with the continuous prone of unprovoked spontaneous seizures after brain insults, such as stroke, traumatic brain injury, CNS infectious, and autoimmune disorders, and even some specific inherited conditions. Recently growing experimental and clinical studies have discovered the underlying mechanisms for epileptogenesis, which are multi-aspect and multistep. These findings provide us a number of interesting sites for antiepileptogenic drugs (AEGDs). AEGDs have been evidenced as significantly roles of postponing or completely blocking the development of epilepsy in experimental models. The present review will introduce potential novel candidate drug-targets for AEGDs based on the published studies.