Cargando…

Molecular Hybridization as a Tool in the Design of Multi-target Directed Drug Candidates for Neurodegenerative Diseases

Neurodegenerative Diseases (NDs) are progressive multifactorial neurological pathologies related to neuronal impairment and functional loss from different brain regions. Currently, no effective treatments are available for any NDs, and this lack of efficacy has been attributed to the multitude of in...

Descripción completa

Detalles Bibliográficos
Autores principales: Gontijo, Vanessa Silva, Dias Viegas, Flávia P., Cristancho Ortiz, Cindy Juliet, de Freitas Silva, Matheus, Damasio, Caio Miranda, Rosa, Mayara Chagas, Campos, Thâmara Gaspar, Couto, Dyecika Souza, Tranches Dias, Kris Simone, Viegas, Claudio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bentham Science Publishers 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7457438/
https://www.ncbi.nlm.nih.gov/pubmed/31631821
http://dx.doi.org/10.2174/1385272823666191021124443
Descripción
Sumario:Neurodegenerative Diseases (NDs) are progressive multifactorial neurological pathologies related to neuronal impairment and functional loss from different brain regions. Currently, no effective treatments are available for any NDs, and this lack of efficacy has been attributed to the multitude of interconnected factors involved in their pathophysiology. In the last two decades, a new approach for the rational design of new drug candidates, also called multitarget-directed ligands (MTDLs) strategy, has emerged and has been used in the design and for the development of a variety of hybrid compounds capable to act simultaneously in diverse biological targets. Based on the polypharmacology concept, this new paradigm has been thought as a more secure and effective way for modulating concomitantly two or more biochemical pathways responsible for the onset and progress of NDs, trying to overcome low therapeutical effectiveness. As a complement to our previous review article (Curr. Med. Chem. 2007, 14 (17), 1829-1852. https://doi.org/10.2174/092986707781058805), herein we aimed to cover the period from 2008 to 2019 and highlight the most recent advances of the exploitation of Molecular Hybridization (MH) as a tool in the rational design of innovative multifunctional drug candidate prototypes for the treatment of NDs, specially focused on AD, PD, HD and ALS.