Cargando…
Stochastic gradient boosting frequency-severity model of insurance claims
The standard GLM and GAM frequency-severity models assume independence between the claim frequency and severity. To overcome restrictions of linear or additive forms and to relax the independence assumption, we develop a data-driven dependent frequency-severity model, where we combine a stochastic g...
Autores principales: | Su, Xiaoshan, Bai, Manying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458339/ https://www.ncbi.nlm.nih.gov/pubmed/32866182 http://dx.doi.org/10.1371/journal.pone.0238000 |
Ejemplares similares
-
Detecting Careless Responding in Survey Data Using Stochastic Gradient Boosting
por: Schroeders, Ulrich, et al.
Publicado: (2021) -
Stochastic Models in Life Insurance
por: Koller, Michael
Publicado: (2012) -
SGB-ELM: An Advanced Stochastic Gradient Boosting-Based Ensemble Scheme for Extreme Learning Machine
por: Guo, Hua, et al.
Publicado: (2018) -
Detecting Human Actions in Drone Images Using YoloV5 and Stochastic Gradient Boosting
por: Ahmad, Tasweer, et al.
Publicado: (2022) -
Hospital Claims and the Insurance Surplus
Publicado: (1921)