Cargando…

Controllable freezing of the nuclear spin bath in a single-atom spin qubit

The quantum coherence and gate fidelity of electron spin qubits in semiconductors are often limited by nuclear spin fluctuations. Enrichment of spin-zero isotopes in silicon markedly improves the dephasing time [Formula: see text] , which, unexpectedly, can extend two orders of magnitude beyond theo...

Descripción completa

Detalles Bibliográficos
Autores principales: Mądzik, Mateusz T., Ladd, Thaddeus D., Hudson, Fay E., Itoh, Kohei M., Jakob, Alexander M., Johnson, Brett C., McCallum, Jeffrey C., Jamieson, David N., Dzurak, Andrew S., Laucht, Arne, Morello, Andrea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458445/
https://www.ncbi.nlm.nih.gov/pubmed/32937454
http://dx.doi.org/10.1126/sciadv.aba3442
_version_ 1783576198607011840
author Mądzik, Mateusz T.
Ladd, Thaddeus D.
Hudson, Fay E.
Itoh, Kohei M.
Jakob, Alexander M.
Johnson, Brett C.
McCallum, Jeffrey C.
Jamieson, David N.
Dzurak, Andrew S.
Laucht, Arne
Morello, Andrea
author_facet Mądzik, Mateusz T.
Ladd, Thaddeus D.
Hudson, Fay E.
Itoh, Kohei M.
Jakob, Alexander M.
Johnson, Brett C.
McCallum, Jeffrey C.
Jamieson, David N.
Dzurak, Andrew S.
Laucht, Arne
Morello, Andrea
author_sort Mądzik, Mateusz T.
collection PubMed
description The quantum coherence and gate fidelity of electron spin qubits in semiconductors are often limited by nuclear spin fluctuations. Enrichment of spin-zero isotopes in silicon markedly improves the dephasing time [Formula: see text] , which, unexpectedly, can extend two orders of magnitude beyond theoretical expectations. Using a single-atom (31)P qubit in enriched (28)Si, we show that the abnormally long [Formula: see text] is due to the freezing of the dynamics of the residual (29)Si nuclei, caused by the electron-nuclear hyperfine interaction. Inserting a waiting period when the electron is controllably removed unfreezes the nuclear dynamics and restores the ergodic [Formula: see text] value. Our conclusions are supported by a nearly parameter-free modeling of the (29)Si nuclear spin dynamics, which reveals the degree of backaction provided by the electron spin. This study clarifies the limits of ergodic assumptions in nuclear bath dynamics and provides previously unidentified strategies for maximizing coherence and gate fidelity of spin qubits in semiconductors.
format Online
Article
Text
id pubmed-7458445
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-74584452020-09-16 Controllable freezing of the nuclear spin bath in a single-atom spin qubit Mądzik, Mateusz T. Ladd, Thaddeus D. Hudson, Fay E. Itoh, Kohei M. Jakob, Alexander M. Johnson, Brett C. McCallum, Jeffrey C. Jamieson, David N. Dzurak, Andrew S. Laucht, Arne Morello, Andrea Sci Adv Research Articles The quantum coherence and gate fidelity of electron spin qubits in semiconductors are often limited by nuclear spin fluctuations. Enrichment of spin-zero isotopes in silicon markedly improves the dephasing time [Formula: see text] , which, unexpectedly, can extend two orders of magnitude beyond theoretical expectations. Using a single-atom (31)P qubit in enriched (28)Si, we show that the abnormally long [Formula: see text] is due to the freezing of the dynamics of the residual (29)Si nuclei, caused by the electron-nuclear hyperfine interaction. Inserting a waiting period when the electron is controllably removed unfreezes the nuclear dynamics and restores the ergodic [Formula: see text] value. Our conclusions are supported by a nearly parameter-free modeling of the (29)Si nuclear spin dynamics, which reveals the degree of backaction provided by the electron spin. This study clarifies the limits of ergodic assumptions in nuclear bath dynamics and provides previously unidentified strategies for maximizing coherence and gate fidelity of spin qubits in semiconductors. American Association for the Advancement of Science 2020-07-03 /pmc/articles/PMC7458445/ /pubmed/32937454 http://dx.doi.org/10.1126/sciadv.aba3442 Text en Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Mądzik, Mateusz T.
Ladd, Thaddeus D.
Hudson, Fay E.
Itoh, Kohei M.
Jakob, Alexander M.
Johnson, Brett C.
McCallum, Jeffrey C.
Jamieson, David N.
Dzurak, Andrew S.
Laucht, Arne
Morello, Andrea
Controllable freezing of the nuclear spin bath in a single-atom spin qubit
title Controllable freezing of the nuclear spin bath in a single-atom spin qubit
title_full Controllable freezing of the nuclear spin bath in a single-atom spin qubit
title_fullStr Controllable freezing of the nuclear spin bath in a single-atom spin qubit
title_full_unstemmed Controllable freezing of the nuclear spin bath in a single-atom spin qubit
title_short Controllable freezing of the nuclear spin bath in a single-atom spin qubit
title_sort controllable freezing of the nuclear spin bath in a single-atom spin qubit
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458445/
https://www.ncbi.nlm.nih.gov/pubmed/32937454
http://dx.doi.org/10.1126/sciadv.aba3442
work_keys_str_mv AT madzikmateuszt controllablefreezingofthenuclearspinbathinasingleatomspinqubit
AT laddthaddeusd controllablefreezingofthenuclearspinbathinasingleatomspinqubit
AT hudsonfaye controllablefreezingofthenuclearspinbathinasingleatomspinqubit
AT itohkoheim controllablefreezingofthenuclearspinbathinasingleatomspinqubit
AT jakobalexanderm controllablefreezingofthenuclearspinbathinasingleatomspinqubit
AT johnsonbrettc controllablefreezingofthenuclearspinbathinasingleatomspinqubit
AT mccallumjeffreyc controllablefreezingofthenuclearspinbathinasingleatomspinqubit
AT jamiesondavidn controllablefreezingofthenuclearspinbathinasingleatomspinqubit
AT dzurakandrews controllablefreezingofthenuclearspinbathinasingleatomspinqubit
AT lauchtarne controllablefreezingofthenuclearspinbathinasingleatomspinqubit
AT morelloandrea controllablefreezingofthenuclearspinbathinasingleatomspinqubit