Cargando…

Controlling Optically Driven Atomic Migration Using Crystal-Facet Control in Plasmonic Nanocavities

[Image: see text] Plasmonic nanoconstructs are widely exploited to confine light for applications ranging from quantum emitters to medical imaging and biosensing. However, accessing extreme near-field confinement using the surfaces of metallic nanoparticles often induces permanent structural changes...

Descripción completa

Detalles Bibliográficos
Autores principales: Xomalis, Angelos, Chikkaraddy, Rohit, Oksenberg, Eitan, Shlesinger, Ilan, Huang, Junyang, Garnett, Erik C., Koenderink, A. Femius, Baumberg, Jeremy J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458481/
https://www.ncbi.nlm.nih.gov/pubmed/32687323
http://dx.doi.org/10.1021/acsnano.0c04600
_version_ 1783576206564655104
author Xomalis, Angelos
Chikkaraddy, Rohit
Oksenberg, Eitan
Shlesinger, Ilan
Huang, Junyang
Garnett, Erik C.
Koenderink, A. Femius
Baumberg, Jeremy J.
author_facet Xomalis, Angelos
Chikkaraddy, Rohit
Oksenberg, Eitan
Shlesinger, Ilan
Huang, Junyang
Garnett, Erik C.
Koenderink, A. Femius
Baumberg, Jeremy J.
author_sort Xomalis, Angelos
collection PubMed
description [Image: see text] Plasmonic nanoconstructs are widely exploited to confine light for applications ranging from quantum emitters to medical imaging and biosensing. However, accessing extreme near-field confinement using the surfaces of metallic nanoparticles often induces permanent structural changes from light, even at low intensities. Here, we report a robust and simple technique to exploit crystal facets and their atomic boundaries to prevent the hopping of atoms along and between facet planes. Avoiding X-ray or electron microscopy techniques that perturb these atomic restructurings, we use elastic and inelastic light scattering to resolve the influence of crystal habit. A clear increase in stability is found for {100} facets with steep inter-facet angles, compared to multiple atomic steps and shallow facet curvature on spherical nanoparticles. Avoiding atomic hopping allows Raman scattering on molecules with low Raman cross-section while circumventing effects of charging and adatom binding, even over long measurement times. These nanoconstructs allow the optical probing of dynamic reconstruction in nanoscale surface science, photocatalysis, and molecular electronics.
format Online
Article
Text
id pubmed-7458481
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-74584812020-09-01 Controlling Optically Driven Atomic Migration Using Crystal-Facet Control in Plasmonic Nanocavities Xomalis, Angelos Chikkaraddy, Rohit Oksenberg, Eitan Shlesinger, Ilan Huang, Junyang Garnett, Erik C. Koenderink, A. Femius Baumberg, Jeremy J. ACS Nano [Image: see text] Plasmonic nanoconstructs are widely exploited to confine light for applications ranging from quantum emitters to medical imaging and biosensing. However, accessing extreme near-field confinement using the surfaces of metallic nanoparticles often induces permanent structural changes from light, even at low intensities. Here, we report a robust and simple technique to exploit crystal facets and their atomic boundaries to prevent the hopping of atoms along and between facet planes. Avoiding X-ray or electron microscopy techniques that perturb these atomic restructurings, we use elastic and inelastic light scattering to resolve the influence of crystal habit. A clear increase in stability is found for {100} facets with steep inter-facet angles, compared to multiple atomic steps and shallow facet curvature on spherical nanoparticles. Avoiding atomic hopping allows Raman scattering on molecules with low Raman cross-section while circumventing effects of charging and adatom binding, even over long measurement times. These nanoconstructs allow the optical probing of dynamic reconstruction in nanoscale surface science, photocatalysis, and molecular electronics. American Chemical Society 2020-07-20 2020-08-25 /pmc/articles/PMC7458481/ /pubmed/32687323 http://dx.doi.org/10.1021/acsnano.0c04600 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Xomalis, Angelos
Chikkaraddy, Rohit
Oksenberg, Eitan
Shlesinger, Ilan
Huang, Junyang
Garnett, Erik C.
Koenderink, A. Femius
Baumberg, Jeremy J.
Controlling Optically Driven Atomic Migration Using Crystal-Facet Control in Plasmonic Nanocavities
title Controlling Optically Driven Atomic Migration Using Crystal-Facet Control in Plasmonic Nanocavities
title_full Controlling Optically Driven Atomic Migration Using Crystal-Facet Control in Plasmonic Nanocavities
title_fullStr Controlling Optically Driven Atomic Migration Using Crystal-Facet Control in Plasmonic Nanocavities
title_full_unstemmed Controlling Optically Driven Atomic Migration Using Crystal-Facet Control in Plasmonic Nanocavities
title_short Controlling Optically Driven Atomic Migration Using Crystal-Facet Control in Plasmonic Nanocavities
title_sort controlling optically driven atomic migration using crystal-facet control in plasmonic nanocavities
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458481/
https://www.ncbi.nlm.nih.gov/pubmed/32687323
http://dx.doi.org/10.1021/acsnano.0c04600
work_keys_str_mv AT xomalisangelos controllingopticallydrivenatomicmigrationusingcrystalfacetcontrolinplasmonicnanocavities
AT chikkaraddyrohit controllingopticallydrivenatomicmigrationusingcrystalfacetcontrolinplasmonicnanocavities
AT oksenbergeitan controllingopticallydrivenatomicmigrationusingcrystalfacetcontrolinplasmonicnanocavities
AT shlesingerilan controllingopticallydrivenatomicmigrationusingcrystalfacetcontrolinplasmonicnanocavities
AT huangjunyang controllingopticallydrivenatomicmigrationusingcrystalfacetcontrolinplasmonicnanocavities
AT garnetterikc controllingopticallydrivenatomicmigrationusingcrystalfacetcontrolinplasmonicnanocavities
AT koenderinkafemius controllingopticallydrivenatomicmigrationusingcrystalfacetcontrolinplasmonicnanocavities
AT baumbergjeremyj controllingopticallydrivenatomicmigrationusingcrystalfacetcontrolinplasmonicnanocavities