Cargando…
Radiomics and Deep Learning from Research to Clinical Workflow: Neuro-Oncologic Imaging
Imaging plays a key role in the management of brain tumors, including the diagnosis, prognosis, and treatment response assessment. Radiomics and deep learning approaches, along with various advanced physiologic imaging parameters, hold great potential for aiding radiological assessments in neuro-onc...
Autores principales: | Park, Ji Eun, Kickingereder, Philipp, Kim, Ho Sung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458866/ https://www.ncbi.nlm.nih.gov/pubmed/32729271 http://dx.doi.org/10.3348/kjr.2019.0847 |
Ejemplares similares
-
Quality of Radiomics Research on Brain Metastasis: A Roadmap to Promote Clinical Translation
por: Park, Chae Jung, et al.
Publicado: (2022) -
Prediction of Prognosis in Glioblastoma Using Radiomics Features of Dynamic Contrast-Enhanced MRI
por: Pak, Elena, et al.
Publicado: (2021) -
Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors
por: Park, Yae Won, et al.
Publicado: (2019) -
Development and Validation of MRI-Based Radiomics Models for Diagnosing Juvenile Myoclonic Epilepsy
por: Kim, Kyung Min, et al.
Publicado: (2022) -
A Nationwide Web-Based Survey of Neuroradiologists’ Perceptions of Artificial Intelligence Software for Neuro-Applications in Korea
por: Choi, Hyunsu, et al.
Publicado: (2023)