Cargando…
Harnessing the Power of Quality Assurance Data: Can We Use Statistical Modeling for Quality Risk Assessment of Clinical Trials?
BACKGROUND: The increasing number of clinical trials and their complexity make it challenging to detect and identify clinical quality issues timely. Despite extensive sponsor audit programs and monitoring activities, issues related to data integrity, safety, sponsor oversight and patient consent hav...
Autores principales: | Koneswarakantha, Björn, Ménard, Timothé, Rolo, Donato, Barmaz, Yves, Bowling, Rich |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458946/ https://www.ncbi.nlm.nih.gov/pubmed/32865805 http://dx.doi.org/10.1007/s43441-020-00147-x |
Ejemplares similares
-
Follow-Up on the Use of Machine Learning in Clinical Quality Assurance: Can We Detect Adverse Event Under-Reporting in Oncology Trials?
por: Ménard, Timothé, et al.
Publicado: (2019) -
Enabling Data-Driven Clinical Quality Assurance: Predicting Adverse Event Reporting in Clinical Trials Using Machine Learning
por: Ménard, Timothé, et al.
Publicado: (2019) -
Leveraging analytics to assure quality during the Covid-19 pandemic - The COVACTA clinical study example
por: Ménard, Timothé, et al.
Publicado: (2020) -
Statistical Modeling for Quality Risk Assessment of Clinical Trials: Follow-Up at the Era of Remote Auditing
por: Koneswarakantha, Björn, et al.
Publicado: (2022) -
Bayesian Modeling for the Detection of Adverse Events Underreporting in Clinical Trials
por: Barmaz, Yves, et al.
Publicado: (2021)