Cargando…
Automatic prostate and prostate zones segmentation of magnetic resonance images using DenseNet-like U-net
Magnetic resonance imaging (MRI) provides detailed anatomical images of the prostate and its zones. It has a crucial role for many diagnostic applications. Automatic segmentation such as that of the prostate and prostate zones from MR images facilitates many diagnostic and therapeutic applications....
Autores principales: | Aldoj, Nader, Biavati, Federico, Michallek, Florian, Stober, Sebastian, Dewey, Marc |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459118/ https://www.ncbi.nlm.nih.gov/pubmed/32868836 http://dx.doi.org/10.1038/s41598-020-71080-0 |
Ejemplares similares
-
Fully automated quantification of in vivo viscoelasticity of prostate zones using magnetic resonance elastography with Dense U-net segmentation
por: Aldoj, Nader, et al.
Publicado: (2022) -
An Algorithm for Automatic Rib Fracture Recognition Combined with nnU-Net and DenseNet
por: Zhang, Junzhong, et al.
Publicado: (2022) -
Protein Contact Map Prediction Based on ResNet and DenseNet
por: Li, Zhong, et al.
Publicado: (2020) -
Fully Convolutional DenseNet with Multiscale Context for Automated Breast Tumor Segmentation
por: Hai, Jinjin, et al.
Publicado: (2019) -
DenseNet_ HybWWoA: A DenseNet-Based Brain Metastasis Classification with a Hybrid Metaheuristic Feature Selection Strategy
por: Alshammari, Abdulaziz
Publicado: (2023)