Cargando…
Applied machine learning for predicting the lanthanide-ligand binding affinities
Binding affinities of metal–ligand complexes are central to a multitude of applications like drug design, chelation therapy, designing reagents for solvent extraction etc. While state-of-the-art molecular modelling approaches are usually employed to gather structural and chemical insights about the...
Autores principales: | Chaube, Suryanaman, Goverapet Srinivasan, Sriram, Rai, Beena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459320/ https://www.ncbi.nlm.nih.gov/pubmed/32868845 http://dx.doi.org/10.1038/s41598-020-71255-9 |
Ejemplares similares
-
Prediction of protein–ligand binding affinity from sequencing data with interpretable machine learning
por: Rube, H. Tomas, et al.
Publicado: (2022) -
An Analysis of Proteochemometric and Conformal Prediction Machine Learning Protein-Ligand Binding Affinity Models
por: Parks, Conor, et al.
Publicado: (2020) -
Dowker complex based machine learning (DCML) models for protein-ligand binding affinity prediction
por: Liu, Xiang, et al.
Publicado: (2022) -
Persistent spectral–based machine learning (PerSpect ML) for protein-ligand binding affinity prediction
por: Meng, Zhenyu, et al.
Publicado: (2021) -
Predicting the impacts of mutations on protein-ligand binding affinity based on molecular dynamics simulations and machine learning methods
por: Wang, Debby D., et al.
Publicado: (2020)