Cargando…
Machine Learning Confirms Nonlinear Relationship between Severity of Peripheral Arterial Disease, Functional Limitation and Symptom Severity
Background: Peripheral arterial disease (PAD) involves arterial blockages in the body, except those serving the heart and brain. We explore the relationship of functional limitation and PAD symptoms obtained from a quality-of-life questionnaire about the severity of the disease. We used a supervised...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459735/ https://www.ncbi.nlm.nih.gov/pubmed/32722280 http://dx.doi.org/10.3390/diagnostics10080515 |
Sumario: | Background: Peripheral arterial disease (PAD) involves arterial blockages in the body, except those serving the heart and brain. We explore the relationship of functional limitation and PAD symptoms obtained from a quality-of-life questionnaire about the severity of the disease. We used a supervised artificial intelligence-based method of data analyses known as machine learning (ML) to demonstrate a nonlinear relationship between symptoms and functional limitation amongst patients with and without PAD. Objectives: This paper will demonstrate the use of machine learning to explore the relationship between functional limitation and symptom severity to PAD severity. Methods: We performed supervised machine learning and graphical analysis, analyzing 703 patients from an administrative database with data comprising the toe–brachial index (TBI), baseline demographics and symptom score(s) derived from a modified vascular quality-of-life questionnaire, calf circumference in centimeters and a six-minute walk (distance in meters). Results: Graphical analysis upon categorizing patients into critical limb ischemia (CLI), severe PAD, moderate PAD and no PAD demonstrated a decrease in walking distance as symptoms worsened and the relationship appeared nonlinear. A supervised ML ensemble (random forest, neural network, generalized linear model) found symptom score, calf circumference (cm), age in years, and six-minute walk (distance in meters) to be important variables to predict PAD. Graphical analysis of a six-minute walk distance against each of the other variables categorized by PAD status showed nonlinear relationships. For low symptom scores, a six-minute walk test (6MWT) demonstrated high specificity for PAD. Conclusions: PAD patients with the greatest functional limitation may sometimes be asymptomatic. Patients without PAD show no relationship between functional limitation and symptoms. Machine learning allows exploration of nonlinear relationships. A simple linear model alone would have overlooked or considered such a nonlinear relationship unimportant. |
---|