Cargando…
Multiplicity-weighted Euler’s formula for symmetrically arranged space-filling polyhedra
The famous Euler’s rule for three-dimensional polyhedra, F − E + V = 2 (F, E and V are the numbers of faces, edges and vertices, respectively), when extended to many tested cases of space-filling polyhedra such as the asymmetric unit (ASU), takes the form Fn − En + Vn = 1, where Fn, En and Vn enumer...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459769/ https://www.ncbi.nlm.nih.gov/pubmed/32869755 http://dx.doi.org/10.1107/S2053273320007093 |
Sumario: | The famous Euler’s rule for three-dimensional polyhedra, F − E + V = 2 (F, E and V are the numbers of faces, edges and vertices, respectively), when extended to many tested cases of space-filling polyhedra such as the asymmetric unit (ASU), takes the form Fn − En + Vn = 1, where Fn, En and Vn enumerate the corresponding elements, normalized by their multiplicity, i.e. by the number of times they are repeated by the space-group symmetry. This modified formula holds for the ASUs of all 230 space groups and 17 two-dimensional planar groups as specified in the International Tables for Crystallography, and for a number of tested Dirichlet domains, suggesting that it may have a general character. The modification of the formula stems from the fact that in a symmetrical space-filling arrangement the polyhedra (such as the ASU) have incomplete bounding elements (faces, edges, vertices), since they are shared (in various degrees) with the space-filling neighbors. |
---|