Cargando…
Multimodal Brain Tumor Classification Using Deep Learning and Robust Feature Selection: A Machine Learning Application for Radiologists
Manual identification of brain tumors is an error-prone and tedious process for radiologists; therefore, it is crucial to adopt an automated system. The binary classification process, such as malignant or benign is relatively trivial; whereas, the multimodal brain tumors classification (T1, T2, T1CE...
Autores principales: | Khan, Muhammad Attique, Ashraf, Imran, Alhaisoni, Majed, Damaševičius, Robertas, Scherer, Rafal, Rehman, Amjad, Bukhari, Syed Ahmad Chan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459797/ https://www.ncbi.nlm.nih.gov/pubmed/32781795 http://dx.doi.org/10.3390/diagnostics10080565 |
Ejemplares similares
-
Breast Cancer Classification from Ultrasound Images Using Probability-Based Optimal Deep Learning Feature Fusion
por: Jabeen, Kiran, et al.
Publicado: (2022) -
COVID-19 Case Recognition from Chest CT Images by Deep Learning, Entropy-Controlled Firefly Optimization, and Parallel Feature Fusion
por: Khan, Muhammad Attique, et al.
Publicado: (2021) -
SkinNet-INIO: Multiclass Skin Lesion Localization and Classification Using Fusion-Assisted Deep Neural Networks and Improved Nature-Inspired Optimization Algorithm
por: Hussain, Muneezah, et al.
Publicado: (2023) -
BrainNet: Optimal Deep Learning Feature Fusion for Brain Tumor Classification
por: Zahid, Usman, et al.
Publicado: (2022) -
Skin Lesion Segmentation and Multiclass Classification Using Deep Learning Features and Improved Moth Flame Optimization
por: Khan, Muhammad Attique, et al.
Publicado: (2021)