Cargando…

Lactoferrin Functionalized Biomaterials: Tools for Prevention of Implant-Associated Infections

Tissue engineering is one of the most important biotechnologies in the biomedical field. It requires the application of the principles of scientific engineering in order to design and build natural or synthetic biomaterials feasible for the maintenance of tissues and organs. Depending on the specifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Pall, Emoke, Roman, Alexandra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459815/
https://www.ncbi.nlm.nih.gov/pubmed/32824241
http://dx.doi.org/10.3390/antibiotics9080522
Descripción
Sumario:Tissue engineering is one of the most important biotechnologies in the biomedical field. It requires the application of the principles of scientific engineering in order to design and build natural or synthetic biomaterials feasible for the maintenance of tissues and organs. Depending on the specific applications, the selection of the proper material remains a significant clinical concern. Implant-associated infection is one of the most severe complications in orthopedic implant surgeries. The treatment of these infections is difficult because the surface of the implant serves not only as a substrate for the formation of the biofilm, but also for the selection of multidrug-resistant bacterial strains. Therefore, a promising new approach for prevention of implant-related infection involves development of new implantable, non-antibiotic-based biomaterials. This review provides a brief overview of antimicrobial peptide-based biomaterials—especially those coated with lactoferrin.