Cargando…
From Food Waste to Innovative Biomaterial: Sea Urchin-Derived Collagen for Applications in Skin Regenerative Medicine
Collagen-based skin-like scaffolds (CBSS) are promising alternatives to skin grafts to repair wounds and injuries. In this work, we propose that the common marine invertebrate sea urchin represents a promising and eco-friendly source of native collagen to develop innovative CBSS for skin injury trea...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460064/ https://www.ncbi.nlm.nih.gov/pubmed/32781644 http://dx.doi.org/10.3390/md18080414 |
_version_ | 1783576515595730944 |
---|---|
author | Ferrario, Cinzia Rusconi, Francesco Pulaj, Albana Macchi, Raffaella Landini, Paolo Paroni, Moira Colombo, Graziano Martinello, Tiziana Melotti, Luca Gomiero, Chiara Candia Carnevali, M. Daniela Bonasoro, Francesco Patruno, Marco Sugni, Michela |
author_facet | Ferrario, Cinzia Rusconi, Francesco Pulaj, Albana Macchi, Raffaella Landini, Paolo Paroni, Moira Colombo, Graziano Martinello, Tiziana Melotti, Luca Gomiero, Chiara Candia Carnevali, M. Daniela Bonasoro, Francesco Patruno, Marco Sugni, Michela |
author_sort | Ferrario, Cinzia |
collection | PubMed |
description | Collagen-based skin-like scaffolds (CBSS) are promising alternatives to skin grafts to repair wounds and injuries. In this work, we propose that the common marine invertebrate sea urchin represents a promising and eco-friendly source of native collagen to develop innovative CBSS for skin injury treatment. Sea urchin food waste after gonad removal was here used to extract fibrillar glycosaminoglycan (GAG)-rich collagen to produce bilayer (2D + 3D) CBSS. Microstructure, mechanical stability, permeability to water and proteins, ability to exclude bacteria and act as scaffolding for fibroblasts were evaluated. Our data show that the thin and dense 2D collagen membrane strongly reduces water evaporation (less than 5% of water passes through the membrane after 7 days) and protein diffusion (less than 2% of BSA passes after 7 days), and acts as a barrier against bacterial infiltration (more than 99% of the different tested bacterial species is retained by the 2D collagen membrane up to 48 h), thus functionally mimicking the epidermal layer. The thick sponge-like 3D collagen scaffold, structurally and functionally resembling the dermal layer, is mechanically stable in wet conditions, biocompatible in vitro (seeded fibroblasts are viable and proliferate), and efficiently acts as a scaffold for fibroblast infiltration. Thus, thanks to their chemical and biological properties, CBSS derived from sea urchins might represent a promising, eco-friendly, and economically sustainable biomaterial for tissue regenerative medicine. |
format | Online Article Text |
id | pubmed-7460064 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74600642020-09-02 From Food Waste to Innovative Biomaterial: Sea Urchin-Derived Collagen for Applications in Skin Regenerative Medicine Ferrario, Cinzia Rusconi, Francesco Pulaj, Albana Macchi, Raffaella Landini, Paolo Paroni, Moira Colombo, Graziano Martinello, Tiziana Melotti, Luca Gomiero, Chiara Candia Carnevali, M. Daniela Bonasoro, Francesco Patruno, Marco Sugni, Michela Mar Drugs Article Collagen-based skin-like scaffolds (CBSS) are promising alternatives to skin grafts to repair wounds and injuries. In this work, we propose that the common marine invertebrate sea urchin represents a promising and eco-friendly source of native collagen to develop innovative CBSS for skin injury treatment. Sea urchin food waste after gonad removal was here used to extract fibrillar glycosaminoglycan (GAG)-rich collagen to produce bilayer (2D + 3D) CBSS. Microstructure, mechanical stability, permeability to water and proteins, ability to exclude bacteria and act as scaffolding for fibroblasts were evaluated. Our data show that the thin and dense 2D collagen membrane strongly reduces water evaporation (less than 5% of water passes through the membrane after 7 days) and protein diffusion (less than 2% of BSA passes after 7 days), and acts as a barrier against bacterial infiltration (more than 99% of the different tested bacterial species is retained by the 2D collagen membrane up to 48 h), thus functionally mimicking the epidermal layer. The thick sponge-like 3D collagen scaffold, structurally and functionally resembling the dermal layer, is mechanically stable in wet conditions, biocompatible in vitro (seeded fibroblasts are viable and proliferate), and efficiently acts as a scaffold for fibroblast infiltration. Thus, thanks to their chemical and biological properties, CBSS derived from sea urchins might represent a promising, eco-friendly, and economically sustainable biomaterial for tissue regenerative medicine. MDPI 2020-08-06 /pmc/articles/PMC7460064/ /pubmed/32781644 http://dx.doi.org/10.3390/md18080414 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ferrario, Cinzia Rusconi, Francesco Pulaj, Albana Macchi, Raffaella Landini, Paolo Paroni, Moira Colombo, Graziano Martinello, Tiziana Melotti, Luca Gomiero, Chiara Candia Carnevali, M. Daniela Bonasoro, Francesco Patruno, Marco Sugni, Michela From Food Waste to Innovative Biomaterial: Sea Urchin-Derived Collagen for Applications in Skin Regenerative Medicine |
title | From Food Waste to Innovative Biomaterial: Sea Urchin-Derived Collagen for Applications in Skin Regenerative Medicine |
title_full | From Food Waste to Innovative Biomaterial: Sea Urchin-Derived Collagen for Applications in Skin Regenerative Medicine |
title_fullStr | From Food Waste to Innovative Biomaterial: Sea Urchin-Derived Collagen for Applications in Skin Regenerative Medicine |
title_full_unstemmed | From Food Waste to Innovative Biomaterial: Sea Urchin-Derived Collagen for Applications in Skin Regenerative Medicine |
title_short | From Food Waste to Innovative Biomaterial: Sea Urchin-Derived Collagen for Applications in Skin Regenerative Medicine |
title_sort | from food waste to innovative biomaterial: sea urchin-derived collagen for applications in skin regenerative medicine |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460064/ https://www.ncbi.nlm.nih.gov/pubmed/32781644 http://dx.doi.org/10.3390/md18080414 |
work_keys_str_mv | AT ferrariocinzia fromfoodwastetoinnovativebiomaterialseaurchinderivedcollagenforapplicationsinskinregenerativemedicine AT rusconifrancesco fromfoodwastetoinnovativebiomaterialseaurchinderivedcollagenforapplicationsinskinregenerativemedicine AT pulajalbana fromfoodwastetoinnovativebiomaterialseaurchinderivedcollagenforapplicationsinskinregenerativemedicine AT macchiraffaella fromfoodwastetoinnovativebiomaterialseaurchinderivedcollagenforapplicationsinskinregenerativemedicine AT landinipaolo fromfoodwastetoinnovativebiomaterialseaurchinderivedcollagenforapplicationsinskinregenerativemedicine AT paronimoira fromfoodwastetoinnovativebiomaterialseaurchinderivedcollagenforapplicationsinskinregenerativemedicine AT colombograziano fromfoodwastetoinnovativebiomaterialseaurchinderivedcollagenforapplicationsinskinregenerativemedicine AT martinellotiziana fromfoodwastetoinnovativebiomaterialseaurchinderivedcollagenforapplicationsinskinregenerativemedicine AT melottiluca fromfoodwastetoinnovativebiomaterialseaurchinderivedcollagenforapplicationsinskinregenerativemedicine AT gomierochiara fromfoodwastetoinnovativebiomaterialseaurchinderivedcollagenforapplicationsinskinregenerativemedicine AT candiacarnevalimdaniela fromfoodwastetoinnovativebiomaterialseaurchinderivedcollagenforapplicationsinskinregenerativemedicine AT bonasorofrancesco fromfoodwastetoinnovativebiomaterialseaurchinderivedcollagenforapplicationsinskinregenerativemedicine AT patrunomarco fromfoodwastetoinnovativebiomaterialseaurchinderivedcollagenforapplicationsinskinregenerativemedicine AT sugnimichela fromfoodwastetoinnovativebiomaterialseaurchinderivedcollagenforapplicationsinskinregenerativemedicine |