Cargando…

Biofilm Formation Ability and Presence of Adhesion Genes among Coagulase-Negative and Coagulase-Positive Staphylococci Isolates from Raw Cow’s Milk

The capacity for biofilm formation is one of the crucial factors of staphylococcal virulence. The occurrence of biofilm-forming staphylococci in raw milk may result in disturbances in technological processes in dairy factories as well as the contamination of finished food products. Therefore, this s...

Descripción completa

Detalles Bibliográficos
Autores principales: Gajewska, Joanna, Chajęcka-Wierzchowska, Wioleta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460418/
https://www.ncbi.nlm.nih.gov/pubmed/32823918
http://dx.doi.org/10.3390/pathogens9080654
_version_ 1783576596935868416
author Gajewska, Joanna
Chajęcka-Wierzchowska, Wioleta
author_facet Gajewska, Joanna
Chajęcka-Wierzchowska, Wioleta
author_sort Gajewska, Joanna
collection PubMed
description The capacity for biofilm formation is one of the crucial factors of staphylococcal virulence. The occurrence of biofilm-forming staphylococci in raw milk may result in disturbances in technological processes in dairy factories as well as the contamination of finished food products. Therefore, this study aimed to determine the prevalence and characteristics of staphylococcal biofilm formation in raw milk samples and to explore the genetic background associated with biofilm formation in those isolates. The material subjected to testing included 30 cow’s milk samples acquired from farms in the central part of Poland. A total of 54 staphylococcal strains were isolated from the samples, of which 42 were classified as coagulase-negative (CoNS) staphylococci belonging to the following species: S. haemolyticus, S. simulans, S. warneri, S. chromogenes, S. hominis, S. sciuri, S. capitis, S. xylosus and S. saprophyticus, while 12 were classified as S. aureus. The study examined the isolates’ capacity for biofilm formation and the staphylococcal capacity for slime production and determined the presence of genetic determinants responsible for biofilm formation, i.e., the icaA, icaD, bap and eno and, additionally, among coagulase-negative staphylococci, i.e., the aap, bhp, fbe, embP and atlE. Each tested isolate exhibited the capacity for biofilm formation, of which most of them (79.6%) were capable of forming a strong biofilm, while 5.6% formed a moderate biofilm, and 14.8% a weak biofilm. A capacity for slime production was demonstrated in 51.9% isolates. Most of the tested staphylococcal strains (90.7%) had at least one of the tested genes. Nearly half (47.6%) of the CoNS had the eno gene, while for S. aureus, the eno gene was demonstrated in 58.3% isolates. The frequency of the bap gene occurrence was 23.8% and 25% in CoNS strains and S. aureus, respectively. The fbe gene was demonstrated in only three CoNS isolates. The presence of the icaA was only demonstrated in CoNS strains (24.1%), while the icaD was found in both CoNS strains (21.4%) and S. aureus (100%). Among the CoNS, the presence of the embP (16.7%), aap (28.6%) and atlE (23.8%) was demonstrated as well. The obtained study results indicate that bacteria of the Staphylococcus spp. genus have a strong potential to form a biofilm, which may pose a hazard to consumer health.
format Online
Article
Text
id pubmed-7460418
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-74604182020-09-03 Biofilm Formation Ability and Presence of Adhesion Genes among Coagulase-Negative and Coagulase-Positive Staphylococci Isolates from Raw Cow’s Milk Gajewska, Joanna Chajęcka-Wierzchowska, Wioleta Pathogens Article The capacity for biofilm formation is one of the crucial factors of staphylococcal virulence. The occurrence of biofilm-forming staphylococci in raw milk may result in disturbances in technological processes in dairy factories as well as the contamination of finished food products. Therefore, this study aimed to determine the prevalence and characteristics of staphylococcal biofilm formation in raw milk samples and to explore the genetic background associated with biofilm formation in those isolates. The material subjected to testing included 30 cow’s milk samples acquired from farms in the central part of Poland. A total of 54 staphylococcal strains were isolated from the samples, of which 42 were classified as coagulase-negative (CoNS) staphylococci belonging to the following species: S. haemolyticus, S. simulans, S. warneri, S. chromogenes, S. hominis, S. sciuri, S. capitis, S. xylosus and S. saprophyticus, while 12 were classified as S. aureus. The study examined the isolates’ capacity for biofilm formation and the staphylococcal capacity for slime production and determined the presence of genetic determinants responsible for biofilm formation, i.e., the icaA, icaD, bap and eno and, additionally, among coagulase-negative staphylococci, i.e., the aap, bhp, fbe, embP and atlE. Each tested isolate exhibited the capacity for biofilm formation, of which most of them (79.6%) were capable of forming a strong biofilm, while 5.6% formed a moderate biofilm, and 14.8% a weak biofilm. A capacity for slime production was demonstrated in 51.9% isolates. Most of the tested staphylococcal strains (90.7%) had at least one of the tested genes. Nearly half (47.6%) of the CoNS had the eno gene, while for S. aureus, the eno gene was demonstrated in 58.3% isolates. The frequency of the bap gene occurrence was 23.8% and 25% in CoNS strains and S. aureus, respectively. The fbe gene was demonstrated in only three CoNS isolates. The presence of the icaA was only demonstrated in CoNS strains (24.1%), while the icaD was found in both CoNS strains (21.4%) and S. aureus (100%). Among the CoNS, the presence of the embP (16.7%), aap (28.6%) and atlE (23.8%) was demonstrated as well. The obtained study results indicate that bacteria of the Staphylococcus spp. genus have a strong potential to form a biofilm, which may pose a hazard to consumer health. MDPI 2020-08-14 /pmc/articles/PMC7460418/ /pubmed/32823918 http://dx.doi.org/10.3390/pathogens9080654 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Gajewska, Joanna
Chajęcka-Wierzchowska, Wioleta
Biofilm Formation Ability and Presence of Adhesion Genes among Coagulase-Negative and Coagulase-Positive Staphylococci Isolates from Raw Cow’s Milk
title Biofilm Formation Ability and Presence of Adhesion Genes among Coagulase-Negative and Coagulase-Positive Staphylococci Isolates from Raw Cow’s Milk
title_full Biofilm Formation Ability and Presence of Adhesion Genes among Coagulase-Negative and Coagulase-Positive Staphylococci Isolates from Raw Cow’s Milk
title_fullStr Biofilm Formation Ability and Presence of Adhesion Genes among Coagulase-Negative and Coagulase-Positive Staphylococci Isolates from Raw Cow’s Milk
title_full_unstemmed Biofilm Formation Ability and Presence of Adhesion Genes among Coagulase-Negative and Coagulase-Positive Staphylococci Isolates from Raw Cow’s Milk
title_short Biofilm Formation Ability and Presence of Adhesion Genes among Coagulase-Negative and Coagulase-Positive Staphylococci Isolates from Raw Cow’s Milk
title_sort biofilm formation ability and presence of adhesion genes among coagulase-negative and coagulase-positive staphylococci isolates from raw cow’s milk
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460418/
https://www.ncbi.nlm.nih.gov/pubmed/32823918
http://dx.doi.org/10.3390/pathogens9080654
work_keys_str_mv AT gajewskajoanna biofilmformationabilityandpresenceofadhesiongenesamongcoagulasenegativeandcoagulasepositivestaphylococciisolatesfromrawcowsmilk
AT chajeckawierzchowskawioleta biofilmformationabilityandpresenceofadhesiongenesamongcoagulasenegativeandcoagulasepositivestaphylococciisolatesfromrawcowsmilk