Cargando…
An Acceleration Based Fusion of Multiple Spatiotemporal Networks for Gait Phase Detection
Human-gait-phase-recognition is an important technology in the field of exoskeleton robot control and medical rehabilitation. Inertial sensors with accelerometers and gyroscopes are easy to wear, inexpensive and have great potential for analyzing gait dynamics. However, current deep-learning methods...
Autores principales: | Zhen, Tao, Yan, Lei, Kong, Jian-lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460503/ https://www.ncbi.nlm.nih.gov/pubmed/32764244 http://dx.doi.org/10.3390/ijerph17165633 |
Ejemplares similares
-
Spatiotemporal Alterations in Gait in Humanized Transgenic Sickle Mice
por: Kiven, Stacy, et al.
Publicado: (2020) -
Gait Trajectory and Gait Phase Prediction Based on an LSTM Network
por: Su, Binbin, et al.
Publicado: (2020) -
An Improved Spatiotemporal Fusion Approach Based on Multiple Endmember Spectral Mixture Analysis
por: Liu, Wenjie, et al.
Publicado: (2019) -
Pathological-Gait Recognition Using Spatiotemporal Graph Convolutional Networks and Attention Model
por: Kim, Jungi, et al.
Publicado: (2022) -
HAZMAT Vehicle Reidentification in Road Tunnels Based on the Fusion of Appearance and Spatiotemporal Information
por: Jia, Lei, et al.
Publicado: (2023)