Cargando…
Using Deep Learning with Convolutional Neural Network Approach to Identify the Invasion Depth of Endometrial Cancer in Myometrium Using MR Images: A Pilot Study
Myometrial invasion affects the prognosis of endometrial cancer. However, discrepancies exist between pre-operative magnetic resonance imaging staging and post-operative pathological staging. This study aims to validate the accuracy of artificial intelligence (AI) for detecting the depth of myometri...
Autores principales: | Dong, Hsiang-Chun, Dong, Hsiang-Kai, Yu, Mu-Hsien, Lin, Yi-Hsin, Chang, Cheng-Chang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460520/ https://www.ncbi.nlm.nih.gov/pubmed/32824765 http://dx.doi.org/10.3390/ijerph17165993 |
Ejemplares similares
-
Object Detection and Depth Estimation Approach Based on Deep Convolutional Neural Networks †
por: Wang, Huai-Mu, et al.
Publicado: (2021) -
Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks
por: Deniz, Cem M., et al.
Publicado: (2018) -
Use of Myometrium as an Internal Reference for Endometrial and Cervical Cancer on Multiphase Contrast-Enhanced MRI
por: Lin, Chia-Ni, et al.
Publicado: (2016) -
Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network
por: Chen, Chaoyue, et al.
Publicado: (2022) -
Myometrium Invasion, Tumour Size and Lymphovascular Invasion as a Prognostic Factor in Dissemination of Pelvic Lymphatics at Endometrial Carcinoma
por: Lucic, Nenad, et al.
Publicado: (2017)