Cargando…
Visualizing Single-Cell RNA-seq Data with Semisupervised Principal Component Analysis
Single-cell RNA-seq (scRNA-seq) is a powerful tool for analyzing heterogeneous and functionally diverse cell population. Visualizing scRNA-seq data can help us effectively extract meaningful biological information and identify novel cell subtypes. Currently, the most popular methods for scRNA-seq vi...
Autor principal: | Liu, Zhenqiu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460854/ https://www.ncbi.nlm.nih.gov/pubmed/32806757 http://dx.doi.org/10.3390/ijms21165797 |
Ejemplares similares
-
Semisupervised Generative Autoencoder for Single-Cell Data
por: Trong, Trung Ngo, et al.
Publicado: (2020) -
Gene Expression Data Classification With Kernel
Principal Component Analysis
por: Liu, Zhenqiu, et al.
Publicado: (2005) -
Clustering Single-Cell RNA-Seq Data with Regularized Gaussian Graphical Model
por: Liu, Zhenqiu
Publicado: (2021) -
Robust principal component analysis for accurate outlier sample detection in RNA-Seq data
por: Chen, Xiaoying, et al.
Publicado: (2020) -
Semisupervised adversarial neural networks for single-cell classification
por: Kimmel, Jacob C., et al.
Publicado: (2021)