Cargando…

Expression, Distribution and Role of Aquaporins in Various Rhinologic Conditions

Aquaporins (AQPs) are water-specific membrane channel proteins that regulate cellular and organismal water homeostasis. The nose, an organ with important respiratory and olfactory functions, is the first organ exposed to external stimuli. Nose-related topics such as allergic rhinitis (AR) and chroni...

Descripción completa

Detalles Bibliográficos
Autores principales: Jung, Su Young, Park, Dong Choon, Kim, Sung Su, Yeo, Seung Geun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7461600/
https://www.ncbi.nlm.nih.gov/pubmed/32824013
http://dx.doi.org/10.3390/ijms21165853
Descripción
Sumario:Aquaporins (AQPs) are water-specific membrane channel proteins that regulate cellular and organismal water homeostasis. The nose, an organ with important respiratory and olfactory functions, is the first organ exposed to external stimuli. Nose-related topics such as allergic rhinitis (AR) and chronic rhinosinusitis (CRS) have been the subject of extensive research. These studies have reported that mechanisms that drive the development of multiple inflammatory diseases that occur in the nose and contribute to the process of olfactory recognition of compounds entering the nasal cavity involve the action of water channels such as AQPs. In this review, we provide a comprehensive overview of the relationship between AQPs and rhinologic conditions, focusing on the current state of knowledge and mechanisms that link AQPs and rhinologic conditions. Key conclusions include the following: (1) Various AQPs are expressed in both nasal mucosa and olfactory mucosa; (2) the expression of AQPs in these tissues is different in inflammatory diseases such as AR or CRS, as compared with that in normal tissues; (3) the expression of AQPs in CRS differs depending on the presence or absence of nasal polyps; and (4) the expression of AQPs in tissues associated with olfaction is different from that in the respiratory epithelium.