Cargando…
The Performance of Deep Neural Networks in Differentiating Chest X-Rays of COVID-19 Patients From Other Bacterial and Viral Pneumonias
Chest radiography is a critical tool in the early detection, management planning, and follow-up evaluation of COVID-19 pneumonia; however, in smaller clinics around the world, there is a shortage of radiologists to analyze large number of examinations especially performed during a pandemic. Limited...
Autores principales: | Elgendi, Mohamed, Nasir, Muhammad Umer, Tang, Qunfeng, Fletcher, Richard Ribon, Howard, Newton, Menon, Carlo, Ward, Rabab, Parker, William, Nicolaou, Savvas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7461795/ https://www.ncbi.nlm.nih.gov/pubmed/33015100 http://dx.doi.org/10.3389/fmed.2020.00550 |
Ejemplares similares
-
The Effectiveness of Image Augmentation in Deep Learning Networks for Detecting COVID-19: A Geometric Transformation Perspective
por: Elgendi, Mohamed, et al.
Publicado: (2021) -
The Striking Need for Age Diverse Pulse Oximeter Databases
por: Elgendi, Mohamed, et al.
Publicado: (2021) -
PPGTempStitch: A MATLAB Toolbox for Augmenting Annotated Photoplethsmogram Signals
por: Tang, Qunfeng, et al.
Publicado: (2021) -
Subject-Based Model for Reconstructing Arterial Blood Pressure from Photoplethysmogram
por: Tang, Qunfeng, et al.
Publicado: (2022) -
PPG2ECGps: An End-to-End Subject-Specific Deep Neural Network Model for Electrocardiogram Reconstruction from Photoplethysmography Signals without Pulse Arrival Time Adjustments
por: Tang, Qunfeng, et al.
Publicado: (2023)