Cargando…
A Deep Network Model on Dynamic Functional Connectivity With Applications to Gender Classification and Intelligence Prediction
Increasing evidence has suggested that the dynamic properties of functional brain networks are related to individual behaviors and cognition traits. However, current fMRI-based approaches mostly focus on statistical characteristics of the windowed correlation time course, potentially overlooking sub...
Autores principales: | Fan, Liangwei, Su, Jianpo, Qin, Jian, Hu, Dewen, Shen, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7461846/ https://www.ncbi.nlm.nih.gov/pubmed/33013292 http://dx.doi.org/10.3389/fnins.2020.00881 |
Ejemplares similares
-
Brain parcellation driven by dynamic functional connectivity better capture intrinsic network dynamics
por: Fan, Liangwei, et al.
Publicado: (2020) -
Altered Functional Network Connectivity of Precuneus and Executive Control Networks in Type 2 Diabetes Mellitus Without Cognitive Impairment
por: Wu, Jinjian, et al.
Publicado: (2022) -
Discriminating mild traumatic brain injury using sparse dictionary learning of functional network dynamics
por: Fan, Liangwei, et al.
Publicado: (2021) -
Predicting individual brain maturity using dynamic functional connectivity
por: Qin, Jian, et al.
Publicado: (2015) -
An Intelligent EEG Classification Methodology Based on Sparse Representation Enhanced Deep Learning Networks
por: Huang, Jing-Shan, et al.
Publicado: (2020)