Cargando…

Creating Neuroscientific Knowledge Organization System Based on Word Representation and Agglomerative Clustering Algorithm

The literature on neuroscience has grown rapidly in recent years with the emergence of new domains of research. In the context of this progress, creating a knowledge organization system (KOS) that can quickly incorporate terms of a given domain is an important aim in the area. In this article, we de...

Descripción completa

Detalles Bibliográficos
Autores principales: Huangfu, Cunqing, Zeng, Yi, Wang, Yuwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7461893/
https://www.ncbi.nlm.nih.gov/pubmed/33013345
http://dx.doi.org/10.3389/fninf.2020.00038
Descripción
Sumario:The literature on neuroscience has grown rapidly in recent years with the emergence of new domains of research. In the context of this progress, creating a knowledge organization system (KOS) that can quickly incorporate terms of a given domain is an important aim in the area. In this article, we develop a systematic method based on word representation and the agglomerative clustering algorithm to semi-automatically build a hierarchical KOS. We collected 35,832 research keywords and 11,497 research methods from PubMed Central database, and organized them in a hierarchical structure according to semantic distance. We show that the proposed KOS can help find terms related to the given topics, analyze articles related to specific domains of research, and characterize the features of article clusters. The proposed method can significantly reduce the manual work required by experts to organize the KOS.