Cargando…
Dose-Distribution-Driven PET Image-Based Outcome Prediction (DDD-PIOP): A Deep Learning Study for Oropharyngeal Cancer IMRT Application
PURPOSE: To develop a deep learning-based AI agent, DDD-PIOP (Dose-Distribution-Driven PET Image Outcome Prediction), for predicting (18)FDG-PET image outcomes of oropharyngeal cancer (OPC) in response to intensity-modulated radiation therapy (IMRT). METHODS: DDD-PIOP uses pre-radiotherapy (18)FDG-P...
Autores principales: | Wang, Chunhao, Liu, Chenyang, Chang, Yushi, Lafata, Kyle, Cui, Yunfeng, Zhang, Jiahan, Sheng, Yang, Mowery, Yvonne, Brizel, David, Yin, Fang-Fang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7461989/ https://www.ncbi.nlm.nih.gov/pubmed/33014811 http://dx.doi.org/10.3389/fonc.2020.01592 |
Ejemplares similares
-
Post-Radiotherapy PET Image Outcome Prediction by Deep Learning Under Biological Model Guidance: A Feasibility Study of Oropharyngeal Cancer Application
por: Ji, Hangjie, et al.
Publicado: (2022) -
An investigation of machine learning methods in delta-radiomics feature analysis
por: Chang, Yushi, et al.
Publicado: (2019) -
The art of debugging with GDB and DDD and Eclipse
por: Matloff, Norman S, et al.
Publicado: (2008) -
Fatal elective DDD-pacemaker implantation
por: Klop, B., et al.
Publicado: (2017) -
Fatal elective DDD pacemaker implantation
por: Klop, B., et al.
Publicado: (2017)