Cargando…
Biologically Plausible Class Discrimination Based Recurrent Neural Network Training for Motor Pattern Generation
Biological brain stores massive amount of information. Inspired by features of the biological memory, we propose an algorithm to efficiently store different classes of spatio-temporal information in a Recurrent Neural Network (RNN). A given spatio-temporal input triggers a neuron firing pattern, kno...
Autores principales: | Wijesinghe, Parami, Liyanagedera, Chamika, Roy, Kaushik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7461996/ https://www.ncbi.nlm.nih.gov/pubmed/33013282 http://dx.doi.org/10.3389/fnins.2020.00772 |
Ejemplares similares
-
Analog Approach to Constraint Satisfaction Enabled by Spin Orbit Torque Magnetic Tunnel Junctions
por: Wijesinghe, Parami, et al.
Publicado: (2018) -
Magnetic Tunnel Junction as an On-Chip Temperature Sensor
por: Sengupta, Abhronil, et al.
Publicado: (2017) -
Training biologically plausible recurrent neural networks on cognitive tasks with long-term dependencies
por: Soo, Wayne W.M., et al.
Publicado: (2023) -
A biologically plausible learning rule for the Infomax on recurrent neural networks
por: Hayakawa, Takashi, et al.
Publicado: (2014) -
Analysis of Liquid Ensembles for Enhancing the Performance and Accuracy of Liquid State Machines
por: Wijesinghe, Parami, et al.
Publicado: (2019)